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Abstract

The diffraction of shock waves (2 < Mg < 8) in perfect and
imperfect nitrogen and argon by sharp compressive corners (2° < ow < 60’)
were investigated analytically and experimentally. It is shown that
seven shock-wave diffraction domains exist in nitrogen and six in argon
in the ranges 1 < Mg < 10 and 0 < gw < 90°. The domains consist of the
four well-known shock wave reflections, i.e., regular reflection (RR),
single-Mach (SMR), complex-Mach (CMR) and double-Mach (DMR) reflections.
All the transition boundaries between these regions were established
analytically and substantiated by the present experimental results as
well as the data from other sources. Over 100 experiments were conducted
in the UTIAS 10 x 18 cm Hypervelocity Shock Tube equipped with a 23-cm
dia field of view Mach-Zehnder interferometer equipped with a dual-
frequency laser light source. It is shown that real-gas effects have a
significant influence on the size of the regions and their transition
boundaries. Some comparison between steady and nonstationary reflections
are made and discussed. Isopycnics (lines of constant density) as well
as density distributions along the wedge surface are presented for the
various diffraction processes and their differences and similarities are
discussed.
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Notation

argon

abgolute error in measuring cuantity a

helium

specific enthalpy of the flow in region (i)

= Li/Ls

distance between first an@ second triple points
distance travelled by incident shock wave from the wedge corner
flow Mach number in region (i)

incident shock wave Mach number

change over Mach number

flow Mach number in region (2) for a DMR to fuim
nitrogen

isopyenic number

oxygen

flow pressure in region (i)

partition function

distance along wedge surface or shock tube wall measured from
the wedge corner

flow temperature in region (i)

time

flow velocity in region (i)
incident shock wave velocity
velocity vector (i) wrt (J)

coordirnate

coordinate
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Y specific heat ratio

Ja\7 time for incident shock wave to travel distance Ls

83 deflection of flow from its original direction while entering
region (i)

em maximum-deflection angle

es sonic angle

ew actual wedge angle

e; =9, + X, effective wedge angle

M = sin'l(l/M), Mach angle

N flow density in region (i)

¢i incident angle between flow in region (i) and oblique shock wave

X first triple-point-trajectory angle

x' second triple-point-trajectory angle

w angle between I and R

Superscripts

flow properties as measured from the second triple point

* see Fig. 50
Subscripts
(o) flow ahead of I for RR, SMR, CMR and DMR
(1) flow behind I for RR, SMR, CMR and DMR
(2) flow behind R for RR, SMR, CMR and DMR
{2%) flow behind I in laboratory frame of reference
(3) flow behind M for SMR, CMR and DMR .
(4) flow behind M, for DMR
(5) flow behind R, for DMR
:
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FD flow deflection
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1. INTRODUCTION

When a planar moving incident shock wave encounters a sharp compressive
corner in a shock tube, two processes take place simultaneously. The incident
shock wave is reflected by the wedge surface, whereas the induced nonstationary
flow behind it is deflected by the wedge corner. Throughout this report the
first process will be referred to as shock-wave reflection (SR), the second as
flow deflection (FD) and the overall phenomena as shock-wave diffraction (SD).

Shock-wave diffraction, i.e., the combination of shock-wave reflection
and flow deflection, for a given gas, depends on three factors:

(1) Mach number of the incident shock wave M.
(2) Corner wedge angle 0,

(3) Initial thermodynamic state of the gas, i.e., temperature T, and
pressure Py (for a perfect gas this is not required).

Since the nonuniform terminology of the various reflection processes
used in the literature tends to be confusing the following terms are suggested
and will be used throughout this report:

Regular reflection (RR), Fig. la

Single-Mach reflection (SMR), Fig. 1b
Complex-Mach reflection (CMR), Fig. lc
Double-Mach reflection (DMR), Fig. 1d

Although RR and SMR were first noticed by the distinguished physicist
and philosopher Mach (Ref. 1) as early as 1878, almost no work was done in this
field until the 1940's, when Neumann reinitiated the problem (Refs. 2 and 4).
An intensive investigation at Princeton University under the supervision of
Prof. Bleakney finally led to the discovery of CMR by Smith (Ref. 6) and DMR
by White (Refs. 17 and 18). Once these four different types of reflection were
found it became necessary to establish the transition criteria between them.
The transition problem from RR to SMR was first studied by Neumann (Refs. 2 and
4) who assumed the following:

(1) A perfect gas.
(2) Two-dimensional inviscid flows.

(3) When there are two possible solutions (the so-called weak and strong
families of shock waves for producing a required deflection) the weak-
shock solution will occur. This is an experimental fact, which was
verified in the study of two-dimensional supersonic wedge flows (Ref. 28).
Although an explanation of minimum entropy for weaker shocks is sometimes
advanced it has not been proven analytically.

(4) The flow problem is pseudo-stationary. This arose from the observation
that any point on the wave configuration having a plane radius vector r




with the corner as origin was transformed to a new point cr, where c is

a scalar constant. This means that instead of three independent variables
X, ¥ and t the phenomenon was describable in terms of x/t and y/t, T

X and y may be measured relative to any point moving with constant velocity
with respect to the corner; in other words, the flow is self-similar.

Using the above assumptdons Neumann argued (Refs. 2 and 4) that in
an RR the streamline deflection angle 0o through the reflected shock wave is
equal in magnitude but opposite in sign to the deflection angle 6, through
the incident shock wave, i.e., 91 + 6p = O (Fig. 7). This is violated when
the wedge angle oy decreases to the point where it forces 0] to exceed in
magnitude the maximum deflection angle 6p,. This criterion will be referred
to as the "dgtachment" criterion. The detachment criterion can best be
illustrated by using the pressure-deflection (P, ¢)-shock polars. Consider
Fig. 2a where the I and R-polars represent the incident and reflected shock
waves, respectively. Since the net deflection through an RR is zero the
solution is at the point where the R-polar intersects the P/Py-axis, i.e.,
state (2') on Rijji. As the wedge angle g, decreases the R-polar moves away
from the P/Po-axis until it becomes tangent to it [Fig. 2a, state (2*) on
Riv]. Upon further decrease in ¢, the R-polar will not intersect the P/Po-
axis any more and an RR is not possible. Consequently, the detachment
criterion is represented by the Riy shock polar. (Note that the term detach-
ment comes from steady flows where the oblique shock detaches at this angle.)

Some disagreement between the detachment criterion and experiments
were found by Smith (Ref. 6). In his experiments RR persisted beyond the limit
determined by the detachment criterion. Bleskney and his students (Refs. 9, 10,
13, 15, 17, 18, 20, 22, 23) tried to resolve the disagreement found by Smith
(Ref. 6). Unfortunately however, they were unable to do so. Kawamura and
Saito (Ref. 24) who also tried to resolve this problem by making use of shock
polars discovered that the point of tangency between the R-polar and the P/Po-
axis {1.e.; Riys Fig. 2a) can lie outside or inside the I-polar depending on
whether or not the value of Mo is greater or less than a certain change-over
value Moo. Unlike the case of a diatomic gas where different values of Mpe
are reported by different investigators (Refs. 24, 60 and 81), only one value
is reported for a monatomic gas (Ref. 81). All these values are for perfect
gases only.

Henderson and Lozzi (Ref. 60) investigated the RR — SMR-transition
problem experimentally in a wind tunnel and in a shock tube. They introduced
an alternative criterion which has the property that the system always remained
in mechanical equilibrium (i.e., no pressure discontinuities) during transition.
Consider Fig. 2a and note that,once KR terminates and SMR forms, the solution
moves from the point where the R-polar intersects the P-axis (state 2' on Riy)
to the point where the I and R-polars intersect (states 2 and 3 on Ryy). Con-
sequently, a sharp pressure change (from Po' to Pp) is associated with this
transition, if the detachment criterion is accepted. Henderson and Lozzi
argue (Ref. 60) that "a system which develops a pressure discontinuity during
transition cannot be in mechanical equilibrium". Furthermore they say that,
"If a pressure discontinuity occurs during transition then an unsteady wave of
finite amplitude or a finite amplitude band of waves will be generated in the
flow. These would be expansion [waves] for RR —SMR and compression [waves)
for SMR - RR." However, since these waves have not been observed, they
discarded (Ref. 60) the detachment criterion and suggested an alternative




criterion that enables the system to be in mechanical equilibrium during
transition. In order to maintain the system in mechanical equilibrium, the
transition should take place at the point where the R-polar intersects the
I-polar (SMR solution) on the P/Ppo-axis (RR solution). This is illustrated

by states (2) and (3) on the Rjj polar. The formulation of this criterion
yields 67 + 6o = 63 = O and it will be referred to as the "mechanical-equili=-
brium" criterion. “Consider polar Rjjj (Fig. 2a) and note that according to

the detachment criterion an RR takes place at (2') since the termination

case Rijy was not reached. However, according to the mechanical-equilibrium
criterion, RR cannot occur, since the termination criterion given by Rjj was
exceeded. It is worth noting that the area of disagreement in the (Mg, e&)-
plane between these two different criteria (Fig. 2b) is very large. The
mechanical-equilibrium criterion, rather than reducing the previously-
mentioned disagreement between theory and experiment found by Smith (Ref. 6),
where RR occurred even below the line of the detachment criterion in shock-
tube experiments at low incident shock wave Mach numbers, made it even worse,
for their line lies above the detachment-criterion line for all Mg > 1.68

(Mo = 2.23, ¢o = 41.20). Nevertheless, Henderson and Lozzi should be credited
for their new physical approach to the problem. It is worth noting that in

an experiment where the wedge angle ¢, is changed gradually perhaps one might
obtain two different criteria for RR — SMR and SMR —RR transitions. Consider
Fig. 2a and note that if one starts with a given SMR at states (2) and (3) on
Rivy and the wedge angle is increased slowly, it is possible that states a (SMR),
b (SMR), ¢ (SMR - RR) and d (RR) might be encointered, and hence the transition
would follow the mechanical-equilibrium criterion. However, if one started
with a given RR state (2) on Rj and then decreased @, gradually, it is possible
that the sequence of events might be: states d (RR), c (RR), e (RR), f (RR)
and a (SMR). This sequence of events follows the detachment criterion. Such
experiments have not been made to date and need further study.

During their attempt to substantiate their mechanical-equilibrium
criterion, Henderson and Lozzi (Ref. 60) found a "remarkasble anomaly" between
their results from wind-tunnel and shock-tube experiments. In their shock-
tube results RR continued to exist below the detachment and mechanical-equili-
brium transition boundary lines (Fig. 2b) in a region where the perfect-gas
theory had no RR solution. They resolved the anomaly by advancing that those
RR-configurations found below their mechanical-equilibrium transition line
were really undeveloped DMR-configurations in which all shock waves, slip-
streams and triple points typical of a well-developed DMR were too close to-
gether to be observed.

Hornung and Kychakoff (Ref. 65) initiated another criterion for the
termination of RR. They argued that in order for an SMR to form, a length
scale must be available at the reflection point, i.e., pressure signals must
be communicated to the reflection point. This single argument eventually led
them to two different termination lines for RR, depending on whether the
flow under consideration is steady or nonstationary.

Consider the nonstationary RR in Fig. 2c (i) and note that the length
Iy can affect the reflection point P only when a subsonic flow is established
between Q and P (in a frame of referwmce attached to P). In a steady flow
(Fig. 2c, ii) the geometrical length fy can affect the reflection point P only
if a propagation path exists between point @ and point P via the expansion




wave at Q'. This is possible only if the flow between P and Q' is subsonic.
According to Hornung and Kychakoff (Ref. 65) this could happen if an SMR
existed since the flow behind the Mach stem is always subsonic. Consequently,
they argued that transition takes place the very first time when an SMR can
occur. Consider Fig. 2a and note that this corresponds to states (2) and (3)
on Rij. That also represents the mechanical-equilibrium criterion of Henderson
and Lozzi (Ref. 60).

Consequently, Hornung and Kychakoff's sonic criterion led to two
different transition lines in steady and nonstationary flows. In steady flows
the transition satisfies the mechanical-equilibrium criterion, while for non-
stationary flows their analysis led to a new transition line, which will be
referred to as the "sonic" criterion. Note that if the sonic-transition line
was drawn in Fig. 2b, it would coincide with the detachment criterion-transition
line since it lies below it only at very low incident shock waves (Ref. 74).
Consequently it could not be drawn on Fig. 2b. Note that Hornung and Kychakoff
(Ref. 65) claim to have experimental data obtained in both shock-tube and wind-
tunnel flows which verify their criterion.

The transition boundary lines in Fig. 2b were calculated using the
steady-flow theory for regular and single-Mach reflection. This is justified
by the fourth assumption discussed previously. In 1951 Jones, Martin and
Thornhill (Ref 16) used this assumption to transform the equations of motion
so that instead of three independent variables X, y, t only two x/t and y/t
were sufficient to describe the phenomenon. Their analysis was later verified
experimentally by Parks (Ref. 19). However, since in the nonstationary case
the shock waves are usually curved, the results from the steady-state analysis
are correct only in the vicinity of the reflection point for RR and the triple
point in SMR, CMR and DMR.

Skews (Refs. 57 and 58) tried to resolve the disagreement between
analysis and experiment by arguing that the boundary conditions for RR and SMR
should be relaxed. In the case of SMR he assumed that the pressure and flow
deflection immediately behind the reflected shock wave R need not be the same
as those behind the Mach stem. Consequently he defined two relaxed variables
F = (P2 - Po)/(P3 - Po) and € = 62 - 63. (Note that in the usual SMR theory
F =1 and € = 0.) He supported this new approach by the fact that some
investigators claimed that the slipstream was not a surface of discontinuity
but a shear-flow mixing region. However, since excellent agreement was found
between the classical (without relaxed boundary conditions) theory and
expe:iment for the angles between the various shock waves and slipstream
(Refs. 6, 10, 13, 15, 18 and U43), one cannot justify the need to relax the
bov.idary conditions for SMR.

In the RR-analysis (Ref. 58) Skews relaxed the usual boundary
condition that the flow immediately behind the reflected shock is uniform and
parallel to the wall. Instead, he defined a relaxation angle e between the
flow direction and the wall. (Note ¢ = O is the usual boundary condition.)
Although his numerical results were in better agreement with experiments one
must bear in mind that his analysis was based mainly on mathematical concepts.
Unlike the foregoing SMR-case physical considerations impose the boundary
condition that the supersonic flow behind the reflected shock wave is parallel
to the rigid wall.

Once RR terminates, three different types of reflection can occur
in nonstationary flows, i.e., SMR, CMR and DMR. White (Ref. 17) was the
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first to notice that when the flow Mach number behind the reflected shock wave
R, becomes supersonic in a frame of reference attached to the triple point a
"kink" K forms in R and the transition SMR —» CMR occurs. A mechanism for the
transition was later suggested by Gvozdeva et al (Ref. 45) and Henderson and
Lozzi (Ref. 60). Henderson and Lozzi suggested that a "band of compression
waves" must exist in a CMR. These compressicn waves then converge to a shock
wave to form DMR when Mp > 1. Unfortunately, their suggestion was not substan-
tiated analytically or experimentally. In addition the precise value of Mp for
the termination of CMR and the formation of DMR was not established either.

The correct gasdynamic criterion for the termination of CMR and formation of
DMR was established during the present study. It will be shown in Section 2.4.2
that the flow behind the reflected shock wave must be supersonic with respect to
the kink of a CMR in order for a DMR to form. Consequently, the CMR 23 DMR
transition occurs at I@' = 1. It was found further that M> = 1 corresponds to
Mo =~ 1.3 (Mp measured wrt the first triple point) and hence Gvozdeva et al

(Ref. 45) and Henderson and Lozzi (Ref. 60) were correct in predicting the
transition at Mo > 1.

An attempt to establish some transition-boundary lines experimentally
was made by Bazhenova et al (Ref. 62). However, their experiments did not cover
a significant range of incident shock wave Mach number (Mg) and corner wedge
angle (9y). Their experimental boundaries for SMR, CMR and DMR are limited
to Mg < 4.5. Unfortunately, experiments made by other researchers also did
not cover a wide range of interest. Smith (Ref. 6), Kawamura and Saito (Ref.
24) and White's (Ref. 17, 18) experimental data covered only the range 1 <
Mg < 2.75, while Henderson and Lozzi's (Ref.60) experiments were centred
around the RR-termination criterion line. Law and Glass (Ref. 51) were the
first to extend the range of incident shock Mach number up to Ms < 8, but
their corner wedge-angle range at the lower end was limited (25° < gy < 60°).

Figure 3 which is a reproduction of Fig. 5 from the paper by Bazhenova
et al (Ref. 62) summarizes all the theoretical and experimental knowledge (ex-
cluding the mechanical equilibrium criterion for the termination of RR, discussed
earlier) concerning the regions and boundaries of regular, single-Mach, complex-
Mach and double-Mach reflections available when the present study started. Only
the termination criterion of RR is calculated theoretically for both perfect
and imperfect gases (lines 1 and 2, respectively). Although the SMR boundary
line is also calculated, line 5 (for a perfect gas only) it does not start or
terminate at any other boundary line and hence does not enclose any region.

The imperfect boundary lines between SMR, CMR and DMR (lines 3 and U4) were all
obtained experimentally and they do not encompass any closed region either.
There is no information about the types of reflections for wedge angles in the
range 0 < gy < 20°.

Although most of the investigators were interested in finding the
correct transition criteria from one type of reflection to another there were
some attempts (Refs. 5, 15, 61, 63, 64) to solve the entire flow field for a
given reflection utilizing various analytical or numerical methods. Unfor-
tunately the numerical results suffer from a lack of agreement for the same
énitial conditions depending on the technique used for a solution (Refs. 61,

3 and 73).

In view of the above literature survey, the present research was
directed towards:

(1) Resolving the disagreements concerning the termination criterion of RR.
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(2) Establishing the correct termination criterion of CMR and hence the
formation criterion of DMR.

(3) Defining domains and transition boundaries of the various reflections
in order that they can be predicted a priori.

(4) Extending the experimental data over a much wider range, i.e., 0 < gy < 60°
and 1 < Mg < 10.

(5) Comparing the existing numerical predictions of the isopycnic (constant-
density lines) in the flow field with those obtained interferometrically.

(6) Resolving and clarifying areas of disagreement existing in the literature
concerning this problem.

To achieve these goals it was decided to approach the problem using the
following physical concepts:

(1) It was assumed that the physical processes are governed by the usual
equations of conservation of mass, momentum and energy, as written for
oblique shock waves. The pressure and flow directions were taken as
invariant across shear layers,and very near the wall flow was assumed
to be parallel to the wall.

(2) The shock-reflection process depends on the flow-deflection process behind
it. Consequently, the interaction between these two processes should be
investigated and understood. Note that this approach was initiated by Law
(Ref. 48) and Law and Glass (Ref. 51). Unfortunately, it was not adopted
by other investigators.

(3) Real-gas effects strongly influence the location of the transition boundary
lines in the (Mg, 6y)-plane. Consequently, they should be included in
solving the equations of motion. This is substantiated by lines 1 and'@
of Fig. 3 that illustrate the significance of real-gas effects in shifting
the RR-transition boundary line.

Due to the difficulties in solving the nonlinear equations of motion
it was decided to restrict the imperfect-gas model to thermodynamic and chemical
equilibrium.

The imperfect-gas model in this report takes into account the excita-
tion of the internal degrees of freedom such as rotation-vibration coupling,
vibration and dissociation in nitrogen, and electronic excitation and ionization
in argon (see Appendix A in Ref. 48 for details).

Note that the flow usually passes through two shock waves (incident
and reflected). Consequently, even if the incident shock wave is very weak
the temperature behind the reflected shock wave can be such that the contri-
bution of the vibrational degree of freedom in a diatomic gas can no longer
be neglected.

(4) The CMR and SMR should be treated from a frame of reference attached to
the kink of the CMR or the second triple point of the DMR. Therefore,




the correct transformation of the frame of reference from the first
triple point should be investigated, understood and formulated.

During the present study all the criteria for the formation and
termination of RR, SMR, CMR and DMR have been established analytically. Con-
sequently, the (Mg, e,:,s and the (Mg, 6y)-planes were divided into the domains
of the different types of reflection and diffraction processes, respectively.

Over 100 experiments have been performed in the 10 cm x 18 cm UTIAS
Hypervelocity Shock Tube in nitrogen and argon, at an initial temperature of
nearly 300 K and a pressure of 15 torr. The shock-Mach-number range was
2 < Mg < 8 over a series of wedge angles 2° < g, < 60°. Dual-wavelength
laser interferograms were obtained by using a 23-cm dia field of view Mach-
Zehnder interferometer. For each and every type of diffraction the shock
shapes and density field (isopycnics) as well as the density distribution
along the wedge surface were deduced from the corresponding interferograms,
and comparisons were made with existing numerical analyses.

The experimental results from the present experiments and other
sources substantiate the present analysis. In addition areas of disagreement
"~ which existed in the literature have been clarified and resolved. Finally,
some comparisons between steady and nonstationary shock reflections were made
and discussed.

2. OBLIQUE SHOCK-WAVE REFLECTION IN NONSTATIONARY FLOWS

Since the incident shock wave moves with a constant velocity, the
entire problem can be considered from a pseudo-stationary point of view, by
attaching a frame of reference to any point on the incident shock wave. The
above suggests that instead of three independent variables x, y and t the
phenomenon is now describable in terms of x/t and y/t and the flow problem
is self-similar.

2.1 Reasons for Reflection

Consider now a planar incident shock wave I, having Mach number
Mg (Fig. 4a), colliding with a sharp compressive corner of angle 0y. Denote
the states ahead of and behind it by (0) and (1), respectively. Attach a frame
of reference to the reflection point P where I meets the wedge surface. The
flow in state (0) moving parallel to the wedge surface approaches I with a
velocity Uy = Ug cosec ¢g or a Mach number M, = Mg cosec ¢o, where ¢o =
90° - 6y is the incident angle. While passing through I the flow is deflected
towards the wedge surface by an angle 6 from its original direction, and its
dynamic and thermodynamic properties are changed. The deflection causes the
flow iﬂ ;ta.te (1) to approach the wedge surface obliquely at an angle 01
Fig. 4a).




From simple gasdynamic considerations this situation is analogous
to the case of having a steady flow (P1, T and My) over a wedge 6 (Fig. 5).
It is well known that depending on My this flow can negotiate the corner
either through a subsonic turning (Fig. 5a) if M} < 1, or through a bow shock
wave, straight and attached (Fig. 5b), curved and attached (Fig. 5c) or curved
and detached (Fig. 5d) depending on 61 (perfect gas), when the flow is super-
sonic My > 1 (see Appendix A for further details). For an imperfect gas the
initial temperature Tj and pressure P; are also important.

Applying the above steady flow results, the pseudo-stationary
situation suggests that if Mj > 1 the flow can negotiate the wedge surface either
through an attached (to point P) shock wave (straight or curved, Fig. 6b and
6c, respectively) which will result in an RR, or through a detached shock
wave that will result in a reflection through a three-shock confluence
configuration rather than two (Fig. 6d). In the case of M} < 1 the analogy
suggests that the flow adjusts its direction through a subsonic turning
(Fig. 6a). However, it has been found experimentally throughout this study
that in the nonstationary case SMR occurs even for combinations of Mg and 6y
for which M] < 1 wrt point P. We suggest that the reflection (when Mj <1
arises from the interaction between the incident shock wave and the bow shock
generated by the wedge (Fig. 4b). Let the frame of reference be attached to
point T, where these two shock waves meet. State (2) results from state (1)
on passing through a bow shock wave R. Consequently P > P1 and Pp/Po > P1/Po.
To satisfy the last condition the portion of the incident shock wave I that
lies below T (dashed line TP) must move forward from P to M in order to
become more normal to the oncoming relative flow, forming a Mach stem TM,
triple point T and slipstream S (omitted for clarity).

The triple point trajectory path angle x plays a significant role
when it makes 6y = 6y + x large enough such that My will always be greater
than unity wrt triple point T (a necessary condition for the existence of R).

Note that when the induced flow behind the incident shock wave
becomes subsonic (Mp' < 1), and no shock waves arise from the corner, since
the flow can turn subsonically (Fig. 5a), neither the first reason, Fig. La
(the only one quoted in the literature), nor the one added here, Fig. kb,
apply.

Perhaps the most significant conclusion from the above discussion
is that shock-wave reflection in the nonstationary case depends additionally
on the flow-deflection process over the wedge corner, and cannot be treated
independently of it.

2.2 Regular Reflection (RR)

The regular reflection shock-wave configuration (two-shock con-
fluence) is shown in Fig. 7. The frame of reference is attached to the
reflection point P and it is moving parallel to the wedge surface with the
constant velocity Uy = Ug cosec ¢, where ¢ = 90° - 6, is the angle of
incidence between the incident shock wave I and the oncoming flow Ug. Upon
passing through I the flow (Ug) is deflected by an angle 01 from its original
direction. This deflected supersonic flow Ul is then redeflected by the
reflected shock wave R, by an angle 62 = -91, so that the flow is again
parallel to the wedge surface, meeting the required boundary condition.




It has already been mentioned (Section 2.1) that the flow behind R
(U2) could be either supersonic (Mp > 1) or subsonic (Mo < 1) wrt point P.
Consequently, two different types of RR are possible since the reflected
shock wave can be either straight or curved (Figs. 6b and 6c, respectively)
in the vicinity of the reflection point P.

2.2.1 Analytical Formulation

I In the frame of reference attached to the reflection point P, the

incident and reflected shock waves (I and R) can be treated using steady-flow
| theory.: Considering I and R separately and making use. of the oblique shock
‘ wave relations the equations of motion for the regular reflection are:

For I:
potan¢o = pltan(¢o - el) (2.1)
poUositho = p)Usin(¢_ - o) (2.2)
P, + pU, sin gy = B + pU %sin®(g_ - o)) (2.3)
h +?la‘ ansinaq)o =B * % Ulasina( ¢ - 91) (2.4)
For R: |
pybang, = pytan(¢, - o) (2.5)
p U sing, = szasin(¢l - 92) (2.6)
P, + pyU,%sin’g) = B, + p,0,%sin°(¢) - 6,) (2.7)
By +2 U 2sing = b, + 5 U %sin°(g) - 0,) (2.8)
The boundary condition is:
8y = -0, (2.9)

If equilibrium is assumed, two thermodynamic properties are suffi-
cient to define a state, e.g., p = p(P,T), h = h(P,T)*. Consequently, the
above nine equations have thirteen independent variables, namely: P,, P,
Py, Ty, Tl, T, Ug, Uy, Upy @5 @15 67 and 8p. Thus, if four of them are
known, the remaining nine can be calculated. The four known parameters are
usually the flow pressure and temperature ahead of the incident shock wave
Po and To, respectively, the flow velocity Up = Ug secey and its angle of
incidence with the primary shock wave ¢ = 90° - gy. Note that in shock
tube experiments Py, Ty, Mg and oy are the known or measured parameters.
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2.2.1.1 Perfect-Gas Solution

When the gas under consideration is assumed to be calorically and
thermally perfect the above nine equations can be reduced to the following
four equations (Ref. 31):

P [ p. . |2/2
- T 2y M@ L2-1 1,2
s T B - Sl Sl e
tang, , = 2 2 (2.10, 11)
R P10 3 . La
1+ 7M§ 3 §lz_ 1'57_ ey
’ 0,1 7 0,1
b 5
y+1 , 51
1 +2=1y? g ¥ g
= — = . =2 (2.12)
1+ 1-5—- M +.1 .8
-1 B
7 1
6, +6,=0 (2.13)

The above set of equations involves seven unknowns, namely: y, My,
M, 615 6gs P)/P, and Pp/P). Consequently, in order to solve this set, three
of the variables must be known. If y, My, P1/P, are selected, the rest can
be easily calculated, since the solution now involves solving one equation at
a time with one unknown, i.e., g1 is calculated from Eq. 2.10, then M} and
62 from Egs. 2.12 and 2.13, respectively, and finally Po/P; from Eg. 2.11.

This also suggests that Egqs. 2.10 to 2.13 are reducible to one equation with
one unknown.

It should be mentioned that for this case (perfect gas), the equations
of motion (Eqs. 2.1 to 2.9) have been reduced by Henderson (Ref. 31) to a single
polynomial of order six.

2.2.1.2 Imperfect-Gas Solution

When real-gas effects such as vibration, vibration-rotation coupling
and dissociation in diatomic gases or electronic excitation and ionization in
monatomic gases are considered, the equations of motion (Egs. 2.1 to 2.9)
cannot be simplified. Consequently, one has to solve nine nonlinear algebraic
equations with nine unknowns. However, since the nine equations of motion
consist of two similar sets of four equations each (2.1 to 2.4 and 2.5 to 2.8),
a method was developed in which each set is treated independently. The final
solution is obtained when the last equation (Eq. 2.9) is satisfied.

Consider the first set (Egs. 2.1 to 2.4) which involves eight
variables Po, To, Uo and ¢p on the LHS and P;, Ty, U; and 6; on the RHS.
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Since the variables on the LHS consist of the initial conditions and hence are
known, the RHS can be calculated and F;, T3, Uj and 6; are found.

The second set (Egs. 2.5 to 2.8) which again consist of eight
variables P;, T7, U and ¢; on the LHS and Po, Tp, U2 and 6o on the RHS is
slightly different since not all the parameters on the LHS are known. Only
P1, T7 and Uy which were obtained from the solution of the first set are
known, while ¢) is still unknown. However, if we guess a value of ¢, the
second set becames exactly the same as the first one and the four parameters
on the RHS (P2, T2, Uz and 6,) can be calculated. The correct value of ¢
must satisfy the boundary condition, i.e., Eq. 2.9. The Newton-Raphson method
énsures a rapid convergence to the correct value of ¢;. A computer program
(based on the above method), as well as a typical output is given in Appendix B.

2.2.2 Graphical Solution (Shock-Polar Presentation)

A graphical solution of an RR can be obtained by making use of
(P, 0)-shock polars (Ref. 27). Consider Fig. 8 in which the I-polar corre-
sponds to Pg, To and Mo = Mg secey. State (1) behind I can be easily
obtained from the known incident angle ¢o = 90° - g,. Once state (1) is
determined the shock polar that corresponds to Py, T; and My, i.e., the
R-polar, can be drawn. The solution, state (2), is at the point where the net
deflection equals zero (§ = 0), i.e., where the R-polar intersects the P/P,-
axig. Figure 8 reveals that theoretically two solutions are possible, (2) and
(2'). However (2') corresponds to the so-called strong solution and is dis-
carded on physical grounds that it is not observed in practice.

It is worthwhile mentioning again that the reflected shock wave R
is straight (in the vicinity of the reflection point P) if the solution an
the R-polar lies in the interval g - ggp (see Fig. 9a) whereas for the small
interval 6gg - a curved reflected gﬁock wave is obtained (Fig. 9b). An
RR with a curved reflected shock wave can be seen in Fig. 20 of Ref. 23.

2.2.3 Termination of Regular Reflection

As noted earlier (Section 1) three different criteria for the
termination of RR exist in the literature. The first one is due to Neumann
(Ref. 2) and is known as the "detachment" criterion, which states that RR
terminates when the R-polar becomes tangent to the P-axis on the (P, ¢)-plane
(Fig. 2a,Ryy). Analytically this can be expressed as:

6y + 62m =0 (2.1k)

The second criterion, the "mechanical equilibrium" criterion, is
due to Henderson and Lozzi (Ref. 60). It states that RR terminates when the
I and R-polars intersect on the P axis (Fig.2a,R11), Analytically it assumes
the relation: y

6 + 08, = 085 = 0 (2.15)
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The third criterion is due to Hornung and Kychakoff (Ref. 65) which
states that RR terminates when the R-polar intersects the P-axis at its sonic
point, i.e.,

6 =0 (2.16)

1 %8
S

Since the sonic point and the point of maximum deflection are usually very
close, it is impractical to distinguish between this criterion and the i
detachment criterion, and hence only the first two criteria will be considered |
here. One should note that the third criterion, the so-called sonic criterion,
lies slightly below the detachment criterion at very low Mach numbers.

Hornung and Kychakoff who suggested the third criterion (Eq. 2.16)
found that two different criteria for the terminations of RR exist, one for
steady flow and one for nonstationary flow. They claim that their recent
finding was substantiated by their experiments in both a wind tunnel and a
shock tube. Their data for nonstationary flows (Refs. 65 and T4) do not agree
with the "mechanical-equilibrium" criterion. One should also keep in mind
that Henderson and Lozzi's experimental data revealed a "remarkable anomaly"
between the results obtained in steady and nonstationary (or pseudo-stationary)
flows, where RR was obtained in a region where the "perfect-gas theory" (for
both : ; criteria) has no RR solution. Henderson and Lozzi (Ref. 60) resolved
this disagreement for their shock-tube data by arguing that the RR-like con-
figurations were really undeveloped DMR-configurations, where both the triple
points as well as the slipstreams and the shock waves typical of a well-
developed DMR were too small to be observed. (They estimate the primary and
secondary confluences as being 0.1 mm apart.) A few experiments conducted in
the present work in order to verify their argument, using an optical megnifi- {
cation of 5.4 for Mg ~ 4.7, 6y = 60° and a wedge 8.5 cm long, failed to show :
any sign of a DMR.

In all the experiments claimed by Henderson and Lozzi to be undeveloped
DMR-configurations, the reflected shock wave R is straight near the reflection
point. This indicates that the flow behind R is supersonic (Mp > 1) and hence
parallel to the wall. However a DMR should produce subsonic flow. Consequently,
all the available evidence favours Hornung and Kychakoff's (Ref. 65) conclusion
that the "mechanical equilibrium" criterion established by Henderson and
Lozzi (Ref. 60) is inapplicable to nonstationary flows. Therefore, the detach-
ment criterion, i.e., the case where the R-polar becomes tangent to the P-axis,
Eq. 2.14 is the correct criterion for the termination of RR.

2.2.3.1 Change-Over Mach Number - Mo,

It was 1oted that Kawamura and Saito (Ref. 24) were the first to show
that the point of tangency between the R-polar and the P-axis (the termination
criterion of RR) can lie inside or outside the I-polar (Figs. 10a and 10b, L
respectively) depending on whether the value of My is less or greater than a !
certain change-over value - Mo.. Unfortunately, their value for Mg, = 3.203 |
(7=1.4) does not match their other varisbles Po/P1 = 0.433 and ¢o = 41.5° which |
result in My, = 2.198. Henderson and Lozzi (Ref. 60) pointed out that a misprint
occurred and that it should read Mg, = 2.203, which is in good agreement with




the above values. Unfortunately, Henderson and Lozzi (Ref. 60) who quoted the
value Mo, = 2.23 in the text of their paper used the number 2.40 -in the caption
of their Fig. 3, thereby adding to the confusion caused by Kawamura and Saito's
misprint. A different value, Mo, = 2.202, was recently calculated by Molder
(Ref. 81) for a perfect diatomic gas.

The value calculated here yields Mg, = 2.190 (Mg = 1.450, and @, = 48.55°)
for a perfect diatomic gas (y = 1.4) and Moe = 2.185 (Mg = 1.449 and g, = 4B.46°)
for imperfect nitrogen at Po = 15 torr and To = 300 K. The significance of real-
gas effects (vibration and vibration-rotation coupling) even at this low Mach
number (Mg =~ 1.45) is clear, albeit small. In the case of a perfect monatomic
gas (y = 5/3) the value calculated by Molder (Ref. 81) is 2.470 and our calculated
value of Mo, is 2.453 (Mg = 1.540 and e& = 51.13°). The present value applies
to imperfect argon at Po = 15 torr and To = 300 K. ;

The shock-polar combinations that correspond to Mg, for perfect and
imperfect nitrogen and argon (or any monatomic gas) are shown in Figs. lla, llb
and 1llc, respectively.

When RR terminates the reflection can be achieved only by a three-
shock confluence, i.e., a triple point (T). In nonstationary flows three types
of reflection can occur depending on the flow Mach number behind the reflected
shock wave R. One more difference between these three types of reflection
and RR lies in the fact that they all make the flow near the wedge surface
(behind the Mach stem) subsonic (M3 < 1), while in the case of an RR the flow
near the wall (behind the reflection point) is usually supersonic. ;

2.3 Single-Mach Reflection (SMR)

When the flow behind the reflected shock wave R is subsonic, i.e.,
Mp < 1, in a frame of reference attached to the triple point T, it can negotiate :
the wedge surface by turning subsonically. Consequently, there is no physical
need for additional shock waves.

The wave configuration of an SMR is shown in Fig. 12. The frame of
reference is attached to the triple point T and it moves along a straight line
(the triple point trajectory at an angle ) with a constant velocity Uy = Ug
cosec ¢o where ¢o = 90° - gy (e& = 0w & x} 1s the angle of incidence between
the incident shock wave I and the oncoming flow and y is the angle between the
triple point trajectory and the wedge surface. Throughout this report g, will
be referred to as the effective wedge angle, whereas gy is the actual wedge
angle. The Mach stem M lies ahead of the incident shock wave I. It is normal .
to the wedge surface but not necessarily straight.

The flow in state (O) can reach the region bounded by R and M by
passing through two shock waves I and R or only one shock wave M depending
upon whether it is above or below the triple point trajectory However, gas-
dynamic considerations imply that the gas must be compressed to the same i
pressure, and must move in the same direction on either side of the slipstream. i
Consequently, all other thermodynamic properties such as entropy, density,
temperature, etc , are different giving rise to a slipstream S. It divides
the two regions of equal pressure and flow direction, but different thermodynamic
states.




2.3.1 Analytical Formulation

The shock waves I, R and M are again treated separately, using the
oblique-shock-wave relations across each one of them. Consequently, the equations
of motion for an SMR are:

For I:
potend, = pytan(d, - ;) (2.17)
p U sing = plUlsin( ¢ - el) (2.18)
B, + p U, sin’p, = By + p,U %sin®(g, - o)) (2.19)
b + % U02s1n2¢0 =n + 3 U12s1n2(¢o - 8)) (2.20)

For B3
p tang, = pztan(mi - 62) (2.21)
p U, sing, = pzuzsin(qsl - 92) (2.22)
P, + plU1251112¢l = B, + pU, sin’(¢, - ) (2.23)
by +% Ulasin2¢l = b, + % Uzzsinz(cbl - 6,) (2.24)

For M:
potands = pstan(¢s - 93) (2.25)
poUosin¢3 = p3U3sin(¢3 - 93) (2.26)
P+ poU°2s1n2¢3 =P, + p3U32sin2(¢3 - 83) (2.27)
h, +3 U°2s1n2¢>3 ~h + z U3231n2(¢3 - 9;) (2.28)

where the boundary conditions are:

P, = Py (2.29)
! 03 = ) * 0, (2.30)




It will be shown in Section 2.3.2, using the (P, g)-plane, that
two combinations (families) of SMR are possible, the usual one, in which the
reflected shock wave R redeflects the flow so that 63 = 81 - 62 and one where
the flow is being further deflected while passing through R, i.e., 63 = 61 + 6o
For Mo < 1.55 in nitrogen (or Mo < 1.74 in argon) conly the latter occurs, and
hence the plus sign (+) should be used in Eq. 2.30. In the range 1.55 < Mg <
Moc in nitrogen (or 1.74 < Mg < Mo, in argon) both combinations are possible.
For Mg > Mg, only the first combination occurs and hence the minus sign (-)
should be used in Eq. 2.30. (Note Mo, was introduced in Section 2.2.3.1, where
the corresponding value for argon or nitrogen can be found.)

The above fourteen equations have eighteen independent variables,
namely Py, P1, Po, P3, Tp, T2, T2, T3, Uo, U1, U2, U3, do, ¢1, @¢3, 61, 62 and
83. Consequently, if four of the eighteen parameters are known the remaining
fourteen can be calculated. The four chosen parameters are again the flow
pressure Po and temperature Ty ahead of the incident shock wave, the flow
velocity Uo = Ugsecdy and the angle of incidence between it and the incident
shock wave I, ¢o = 90°- 6y. Unfortunately, unlike the case of RR, the initial
conditions in shock tube experiments, namely Po, To, Ms and 6w are not suffi-
cient to define these four chosen parameters, since oy = 6y + x involves one
more parameter y, which is not known before a photograph of the wave configura-
tion is obtained.

One way of overcoming the problem was suggested by Law and Glass
(Ref. 51) who developed a graphical method to obtain y = x(Po, Tos Mg, 6yw)-
Their graphical method was in good agreement with experiments (in oxygen)
only in the range 25° < @y < L5°, However, the present analytical formulation
of their graphical method gives better agreement (in nitrogen), over a greater
range, i.e., 5° < 6w < k5e, For the range 6y < 5° a new method is suggested
(to be discussed subsequently) .

2.3.1.1 Prediction of Triple Point Trajectory Angle - x

As noted, a fairly good method for predicting the valuesof yx in the
range 25°< 0y < 45° was developed by Law and Glass (Refs. 48 and 51), based on

the experimental observation that, except for very strong shock-wave diffractions,

the Mach stem M is only slightly curved. Consequently, they assumed a straight
Mach stem normal to the wedge surface, and introduced an additional independent
geometrical relation (Fig. 12):

¢3 =90°® - x (2.31)

This additional equation together with the fourteen equations of motion (Egs.
2.17 to 2.30) can now be used to find expressions of the form:

e X(Po’ TO: Mss ew) (2.32)

This is done by keeping Po, To and Mo constants and changing ¢o [¢o = 90° -
(ew + x)] in small steps, and then finally solving graphically for each set
of Pg, To, My and ¢, the equations of motion (Egs. 2.17 to 2.30). Once these
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equations are solved y is calculated from Eq. 2.31 and Mg from the relation
Ms = Mosing,. Consequently, for a given value of My, each value of @y + ¥
(90° - ¢o) corresponds to a value of Mg and x. Repeating the above with
different values of My but still maintaining the same pressure and temperature
(Po and To) will produce a set of points (Mg, x) for each (6w + x). Thus x
vs Mg can be plotted for constant (8w + x). Using these curves x can be
determined for any Mg and 6y at a given P, and T,.

Law and Glass (Ref. 51) found that this method is in good agreement
with experimental results only in the range 25° < 8y < L5°; consequently they
suggested that an alternative method should be developed for smaller wedge
angles.

An alternative method for very small wedge angles 6y < 4° is
suggested in the following. This method is again based on an experimental
fact, i.e., the fact that at small wedge angles an SMR occurs even though
the flow behind the incident shock wave I is subsonic (My < 1) wrt the reflec-
tion point P (Fig. 4a). It has been discussed previously that the triple-point-
trajectory angle plays a significant role (at these small wedge angles) when it
makes the effective wedge angle 8y = 6y + x large enough so that Mj will always
be greater than unity wrt the triple point T (Fig. 4b). Consequently, one can
easily find a relation of the form 6y [Mm=1 = 6w (MS, Py, To) for which the flow
behind the incident shock wave is exactly sonic, i.e., My = 1. Once this
relation is derived, x can be found from:

1
X =0 |, -6 (2.33)
W M1=l
It will be shown in Section 7.2 that for very small wedge angles the value of

predicted by Eq. 2.33 is in better agreement with experimental results than the
one obtained by Law and Glass (Eq. 2.32).

Note that although Po and To do not appear explicitly in Eq. 2.33
as they do in Eq. 2.32, the first term on the RHS of Eq. 2.33 depends on the
initial pressure and temperature and hence both methods of predicting yx have
in general the form y = x(Po, To, Mg, 6w)-

2.3.1.2 Perfect-Gas Solution

A significant simplification is obtained when the gas under considera-
tion is assumed to be calorically and thermally : perfect. The fourteen
equations of motion (Egqs. 2.17 to 2.30) are then reduced to the following six
equations (Ref. 31): :

o 0 22 - Py a3 |22
P 2 y+1 0,1,0 y+1 P
. 0,1,0 0,1,0
tane
1,2,3 ) w@ W
+ 9 L—-l-——J—J—
51,0 7 010 THE et
(2.34, 35, 36)
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P
2 2+l .1
1+2ZxEn® FTITE,
ol 1 2 » P (2'37)
1+ Z o= M1 Y+ 1 o)
2 iy e
7 1
93 =8, + 8 (2.38)
P P. P
3wt 2

This set of six equations involves nine variables,namely, 7, Mo, My, 61, 62, 83,
P1/Po, P2/Py and P3/P,. Consequently, three variables must be defined for a
solution. If y, My and Pl/Po are selected, 6) and M) can be immediately cal-
culated from Eqs. 2.34 and 2.37, respectively, and the number of equations to
be solved is reduced to four.

A further simplification was made by Henderson who reduced this
system of equations of motion to a single polynomial of degree ten, with the
pressure ratio P3/Po as the polynomial variable. The polynomial coefficients
were taken to be functions of y, My and P1/Po. A detailed description is given
in Ref. 31. Note that a polynomial of degree ten yields ten mathematical roots.
Henderson shows, however, that from simple physical consideration and the
possibility of double roots, seven of the ten roots can be discarded. A
detailed discussion of the possible roots can be found in Refs. 31 and 48.

2.3.1.3 Imperfect-Gas Solution

When real-gas effects are considered the equations of motion (Egs.
2.17 to 2.30) cannot be simplified. Consequently, the fourteen nonlinear
algebraic equations must be solved. A method of solution, very much the same
to the one utilized for RR (Section 2.2.1.2) was developed and solved for the
first time.

Note that Egs. 2.17 to 2.30 consist of three similar _sets X
of four equations each (2.17 to 2.20, 2.21 to 2.24 and 2.25 to 2.28) which are
treated separately. The final solution is obtained when Eqs. 2.29 and 2.30
are satisfied. The first set (Egs. 2.17 to 2.20) involves the following eight
varisbles: Po, To, Up and ¢ on the LHS and P1, T1, U; and 61 on the RHS.
Since all variables on the LHS consist of initial conditions and are known,
the RHS can be solved and P, T1, Uy and 6 obtained.

The second set (Egs. 2.21 to 2.24) consistsagain of eight varisbles:
P1, T1, Ul and ¢3 on the LHS and Pp, Tp, Up and 6o on the RHS; thus by assuming
a value of ¢ the LHS becomes known (P, T and Uy were calculated in the first
set) and the RHS can be solved to give Po, T2, Up and 62. The third set (Egs.
2.25 to 2.28) also consists of eight varisbles: Po, To, Up and ¢3 on the LHS
and P3, T3, U3 and 63 on the RHS. It is solved in the same fashion as the
second set, ile., assume a value of ¢3 so that the LHS becomes known (Pg, To
and Uy are the initial conditions) and then solve for P3, T3, U3 and 83. The
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correctly assumed values or ¢ and ¢3 are those which will result in values
of Pp, P3, 81, 62 and 63 that will satisfy the boundary conditions, i.e.,
Egs. 2.29 and 2.30. Fast convergence is assured by using the Newton-Raphson
method. A computer program (based on the ebove method) as well as a typical
output is given in Appendix C.

2.3.2 Graphical Solution (Shock-Polar Presentation)

An SMR in the (P, 9)-plane is showr in Fig. 13. The R-polar does
not intersect the P/Po-axis, and hence an RR is not possible. State (2)
behind the reflected shock wave R, and state (3) behind the Mach stem M, in
the vicinity of the triple point T, are at the point where the R-polar inter-
sects the I-polar [state (2) on the R-polar and state (3) on the I-polar], since it
satisfies the equations of motion (Egs. 2.17 to 2.28) as well as the boundary
conditions (Eqs. 2.29 and 2.30), i.e., 63 = 61 - 62 and P3 =Pp. Note that
since the Mach stem is not straight it corresponds to a small portion of I
rather than single point (3), see Law and Glass (Ref. 51) for details.

It was stated earlier that a necessary condition for an SMR to
exist (once RR is terminated) is that the flow behind the reflected wave R
(Fig. 12) is subsonic (Mp < 1) wrt the triple point T. This means that the sub-
sonic, portion of R-polar (i.e., the one above the sonic point Sg) intersects
with the I-polar. One should note that if the intersection was on the supersonic
portion of R (i.e., below SgR) the flow behind it would be supersonic (Mp > 1)
and since 62 74 O an additional deflecting mechanism would be needed to turn
away this supersonic flow from the wedge surface, or make it subsonic before
colliding with it.

When My < Mp,, i.e., when the R-polar becomes tangent to the P/P,-
axis inside the I-polar (Fig. 10a), the termination of RR will always be
followed by an SMR. In this case, the R-polar will intersect the I-polar
at a point above its point of maximum deflection, i.e., on che strong-shock
family portion. In this range (M, < Noc) the I and R-polars can take on two
basically different combinations. In one of them the solution in the (P, 8)-
plane (Fig. 1ha) indicates that the flow is redeflected by R so that 83 = 62 < 61,
while the other combination (Fig. 1ub) gives 63 = 62 > 61 and hence the flow
is being further deflected by R. The present modification of Eq. 2.30 (the
boundary condition for the equations of motion) that was presented earlier was
made for this reason.

The limiting condition between these two cases is the combination
where 3 = 62 = 61 (Fig. 1lkc), for which there is no deflection through R (in
the vic¢inity of the triple poin% T), i.e., R is normal to the streamlines. The analy-
sis suggests, furthermore, that for Mg < 1.55 in nitrogen and Mg < 1.74 in argon,
only the second combination of the I and R-polars (the one in which 63 = 62 > 01)
occurs, while for 1.55 < My < Mo, in nitrogen. and 1.7h < My < Mo, in argon,
both combinations are possible.

When Mg > Mo, (i.e., the R-polar becomes tangent to the P-axis outside
the I-polar, Fig. 10b) two interesting cases exist. In one of them My, <M <
2.40, 2.41 and 2.69 for perfect nitrogen, imperfect nitrogen and argon, respec-
tively, the R-polar intersects the I-polar in the portion between its sonic point
W& and its point of maximum deflection, mg (Fig. 15), which corresponds to the
subsonic portion, and hence Mp < 1 and an SMR will still occur.
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For higher values of My, the termination of RR will result in Mp > 1
and hence an SMR is not possible. However, if @y (or 6y) is decreased and
Mo kept constant the R-polar moves away from the P-axis, and a situation is
reached in which once again the R-polar intersects the I-polar at its sonic
point s (Fig. 16, Rij). Upon a further decrease of 6y, the R-polar intersects
the I-polar balow its ‘sonic point (Fig. 16, Riii) and hence again an SMR is
obtained. Thus one can conclude that any value of My can be matched with a
corresponding value of ¢o [¢po = 90° - (6y + x)] for which Mp = 1. The signi-
ficance of this family of SMR-solutiomslies in the experimental fact that it
corresponds to an SMR in which the slipstream is curled back, perhaps owing
to the extremely high flow deflections involved. (For example, on Figs. 10a
; and 10b, 6 =~ 1° and 5° respectively, while in Fig. 16, 81 > 25°).

E 2.3.3 Termination of Single-Mach Reflection

As deseribed earlier, the SMR can be viewed as a reflection process
through a three-shock-confluence (I, R and M), by which the flow behind R is
made subsonic (Mp < 1), wrt the triple point T, and hence can negotiate the
solid surface. However, when the Mach number of the incident shock wave is
increased, the flow Mach number behind the reflected shock wave R is also
increased, and finally it exceeds the value of one. Consequently, an SMR is
no longer sufficient, since again we have a supersonic flow (Mo > 1) directed
towards a solid surface (oo # O always). On the (P, 8)-plane this means that
the intersection point between the I and R-polars lies on the supérsonic part of
the R-polar (Fig. 16, Rj). Physically, this supersonic flow will have to be
made either parallel to the solid surface or become subsonic before it reaches
the wall by means of a shock wave (or a compression wave) so that it can nego-
tiate the solid surface subsonically. In practice the second process occurs
and a CMR forms, where the flow Mach number behind the reflected shock wave
is reduced by passing through a compression wave. At higher values of Mo
this compression wave becames a ghodk wave and CMR terminates. Henderson and
Lozzi (Ref. 60) were the first to suggest this sequence of events, i.e., a
band of compression waves which can converge to form a shock wave. The
existence of this compression wave was first verified experimentally during
this study. The reflection associated with the compression wave is a CMR
while the one associated with the shock wave is a DMR.

2.4 Complex-Mach Reflection (CMR)

The CMR shock-wave configuration is shown in Fig. 17. Unlike the case
of an SMR where the reflected shock wave R has continuous (smooth) curvature
until it finally terminates at the surface, here the curvature reverses dis-
continuously. (In some CMR only . a smooth reversal of.curvature takes place.)
As a result a kink forms in the rdflected shock wave. R is straight between
the triple point T and the kink K, but the remaining portion curves continu-
ously until it terminates at the wall. It will be shown that a . compression
wave is located at the kink. When it converges to form a shock wave in DMR, |
the kink becomes the second triple point.

2.4.1 Graphical Solution (Shock-Polar Presentation)

As mentioned previously, the existence of a band of compression
waves suggested by Henderson and Lozzi (Ref. 60) was verified experimentally
during the present study. In order to solve the problem analytically or
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graphically it is assumed that this compression wave exists between the kink

K (Fig. 17) of the reflected wave R and the sliystream S. Consequently, the
flow from region (2) is compressed (by passing through this compression wave)
to a new higher-pressure state (region 5). Furthermore, we impose the boundary
condition that the pressure and flow direction in states (4) and (5) are equal,
and hence they correspond to a single point in the (P, 9)-plane.

The solution is no longer as simple as in the RR or SMR case, since
the kink and its vicinity should be treated from a frame of reference attached
to the kink. Thus the solution must be done in two steps: first, when the
frame of reference is attached to the triple point T, and then when it is
attached to the kink. Consequently, the relative motion of the kink wrt the
triple point should be known (see Appendix D).

Figure 18 represents the graphical solution of a CMR. States (0),
(1), (2) and (3) are found in the same way as for an SMR (see Section 2.3.2),
and states (1'), (2') and (3') are found in the same way as for a DMR (see
subsequent discussion in Section 2.5.2).

Once state (2') is found, the (P, 8)-curve of the compression wave
should be drawn from (2'). Unfortunately, real-gas effects prevent derivation
of an explicit algebraic formula of the (P, )-curve of a compression wave. In
order to overcome this difficulty, assume that the compression process is perfect
(reasonable for such a weak compression) and make use of the Prandtl-Meyer func-
tion, -6 + const = v(M), where g is the deflection angle measured wrt the
direction of a given flow with Mach number M, and wW(M) is the Prandtl-Meyer
function4Ref. 27).

Let any point inside the compression be denoted by i so that:
-g; + const = v(Mi) (2.40)

where:

v() =v/a tan T Vo(f - 1) - tan I/ - 1 (2.41)

Equation 2.40 holds also in state (2'), Fig. 18, and hence:
-eé + const = v(M})
Defining 0, = O results in:
const = v(Mé) (2.42)
Inserting Eq. 2.42 into Eq. 2.40 gives:
o, = VM) - ¥(M,) (2.43)
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(Note that B, = Pé.) Rearrangement of the above equations results in:
1
P
g 2 . 5] ¥ 2
Mi-[7_1+(M2) Np_i] -2 (2.4)

Inserting Eq. 2.4l into Eq. 2.43 yields a relation of the form:

0; = v(My) - £(M, Py, P,) (2.45)
where
V(M) =A@ tan Yo ()? - 1] - tan™h 0% - 1
and
: . z_;i
wro g vt o ([55o0° |[B] -2)
=

r P

[t ][] -

Since N% and Pp are known [state (2') was already found], Eq. 2.45 represents
the (P, 8)-relation across a perfect compression wave.

Once this curve is drawn from state (2'), states (4) and (5) are
obtained at the point where this curve intersects the R'-polar. State (h)
is on the R'-polar while state (5) is on the compression wave polar.

Note that since the compression wave under consideration is weak
it can be replaced by a weak shock wave. For this case, the CMR graphical
solution becomes the same as the DMR graphical solution that is given in
Section 2.5.2.
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2.4.2 Termination of Complex-Mach-Reflection

It has been found in the present study that when the flow Mach
number, M2, behind the reflected shock wave R becomes supersonic in a: frame
of reference attached to the kink K (Fig. 17), then CMR terminates resulting
in DMR (Fig. 19). The kink K becomes the second triple point T1. The portion
of the reflected shock wave R, between T and T}, is straight. The two triple
points and their flow and wave systems are shown in Fig. 20. In the following
the appropriate expression for Mp, i.e., the flow Mach number behind the
reflected shock wave in a frame of reference attached to the kink is developed.

Consider Fig. 21 in which the kink K (or the second triple point
T1) moves with the velocity VriT (or Vkr) wrt the first triple point T. The
flow velocity behind the reflected shock wave R, Vop = Up is directed along
a line that is inclined with an angle ¢1 - 62 to the direction of motion of
i the kink. Consequently, using simple vector analysis and the (x, y)-coordinate
s system shown in Fig. 21,

» v,

o1y T Vopcos(dy - 8) - VTlT

Vng = Vpsin(g) - 6,)

where V3, and Vhp, are the x and y components of the velocity of the flow

behind R wrt the kink K or the second triple point T;. Thus the absolute flow
velocity wrt K becomes:

> 1/2
Vop | = [ng *Vpop - 2V2TVT1T°°S(¢1 - 8)] /

Rearranging the ebove expression results in:

o, ar [0 () -2 () et - 2]
= + = cos =5
2T1 2T Vor Vor 1 2

and in terms of Mach numbers one obtains:

Mé:%[l+<::z:r >2-2<-?§>cos(¢l- 62)]1/2 (2.L46)

The velocity of the second triple point T; wrt the first triple
point T, developed in Appendix D, is given by:

)
_ 9
leT = _DI 00sec(¢l + ¢O - 91)Us (2-‘47)

Note that the above expression for VrT (see Appendix D for details) is based
on an analytical method for predicting the location of the kink originally
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suggested by Law and Glass (Refs. 48, 51). Their method was found to be in
very good agreement with experiments only in the range &y < Lo°, while for
the range 6w > 4O® the agreement became progressively worse (Ref. 46).

2.5 Double-Mach Reflection (DMR)

When the flow Mach number Mp behind the reflected shock wave R (in
a frame of reference attached to the second triple point Tj) exceeds the value
of one, a shock wave is formed at the kink of the CMR, and consequently a DMR
is obtained. The shock wave configuration of a DMR is shown in Fig. 19. The
additional shock wave Ry results in a second triple point T3, and a second
slipstream S3, since the flow behind T7 is obtained from state (1) by passing
through either one shock wave (Mj) or two shock waves (R and R1). The first
triple point trajectory angle is again y while the second triple point trajec-
tory angle is x'.

States (1), (2) and (3) can be found by solving Eqs. 2.17 to 2.30.
It is worth mentioning that the major assumption behind Egs. 2.17 to 2.30 is
that states (0), (1), (2) and (3) are uniform. Consequently, one can conclude
that they describe the first triple point of a DMR better than that of an SMR

since in a DMR state (2) is supersonic and it is obtained from state (1) through

a straight shock wave (R). Recall that in the case of an SMR, R is curved and
hence the flow behind it is not uniform. Note that Egs. 2.17 to 2.30 are

applicable only in the vicinity of the triple point with a confluence of curved

shock waves, and further away from it when the shock waves are straight.

2.5.1 Analytical Formulation

The analytical formulation is based on the similarity between the
flow fields associated with the first and second triple points. Consider
Figs. 20a and 20b, which describe the flow fields in the vicinity of T and
T1 respectively. Let the notation a =b mean that symbol 'b' in Fig. 20b
is equivalent (analogous) to symbol 'a' in Fig. 20a; thus one can write:

state (1) = state (0), state (2) = state (1), state (5) = state (2),

state (4) = state (3);
R=I,Ry =R, My =M, §; =5;
U RUy, Uy SU), UL =Uy, Uf =U

1 2 5 3%

1 \J = \ = .
65 = 6;> 95 655 6y 93,
and finally,

n

d’i = ¢O’ ¢é ¢1 and % - ¢3

Applying this analogy to Egqs. 2.17 to 2.30 will result in the equations of
motion for the second triple point.
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For R:

!
p, tang) = pztan(¢i - eé) (2.48) %
U; sings = pU} sin(gy - (2.49) |
P, + p Uy Eatn” ¢ =Py + pU 281n2(¢i - eé) (2.50)
by + 2 U%sin’) = b, + 5 U3Zsin (e - 0) (2.51)
For Rl:
pptang) = pstan(gy - 65) (2.52)
ppUpsing) = psUssin(dy - 65) (2.53) ﬁ
P, + pUg sin o = Ps + p5 U:%sin (¢2 - eé) (2.54)
b, + 2 Ui%sing) = ng + 5 U52s1n2(¢5 - o) (2.55)
For Ml:
p bang), = phta.n(q" - 8y) (2.56)
p Ujsing, = g Uisin(¢y - ;) (2.57)
Pyt ey iesin2¢ﬁ =P, + phU&2s1n2(¢ﬂ - o) (2.58)
B+ 5 UPsin’y = b, + 2 up2ein’(gy - of) (2.59)

And finally the boundary conditions are:

o, = 6, ¥ eé (2.61)

Since themodynamic properties do not depend on the frame of reference
of the solution pl P15 pg pp, etc, and hence the prime was omitted from the
thermodynamic varisbles in the above equations.
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It has been shown in Section 2.3.1.3 that once Pg, Tq, Uo and ¢,
are known, Egqs. 2.17 to 2.30 can be solved. Thus, in order to solve Egs.
2.48 to 2.61, Py, T1, U] and ¢ should be defined. In the following expressions
for U] and ¢; are developed. q}Note that P; and T; are known from the solution
of Egs. 2.17 to 2.30).

Consider Fig. 21 in which the second triple point T; moves along the
x-axis (defined by the direction of the reflected shock R) with the velocity
VpyT wrt the first triple point T. Simple vector analysis yields that:

Tt Viptosty - Yy

1 il

ik
1T

Vy 3 = VlTsin¢>l

where Vxl and V{T are the x and y components of the velocity of the flow in
state (1) wrt the Second triple point T;, i.e., the x and y components of
Ui. The value of U; then becomes:

o 2 1/2
u! = (U +V2 - 2U1VTchos¢l)

whereas the value of ¢i is:

¢>i = tan

-1 Uls:Lngbl >
Ulcosq)l - VT 1T

Inserting the value of VpyT (Eq. D.3 in Appendix D) into the above two equations
results in:

o B B 1/2
u! = (Ul +LU - & UlUscos¢l) (2.62)

(2.63)

U. sing
8 = e ? g | >

Ulcosqs:L - LUs

where L = Lj/Lg and Lj and Lg, defined in Fig. D.la, should be measured from
an actual interferogram.

It is mentioned in Appendix D that Law and Glass (Ref. 51) developed
an analytical method to predict L in the range 6y < 40° (Eq. D.12). Using their
method one obtains:

Po
L= . cosec(¢1 +¢, - 8 (2.64)

)
1 1

25




Thus for the range 6y < 40° Eqs. 2.62 and 2.63 reduce to:

2
- 2 Po 2 2
U:'L—[U:L +<BI>US cosec (¢l+¢°-el)

Py 1/2
- 2u,U <— > cosec(cbl * g = el)cos¢l ]
1
pos tan'l Uls:Ln¢>l
1 Py )
U, cos¢, - = Uscosec(d)l o~ el)

it

A further simplification can be made using Eq. 2.18 and the relation Ug = Ugsingg
that together result in

Po )
=1 - Ulsm( 9, =0

by ¢

Inserting this relation into the above expressions for Ui and ¢i results in

2
sin“(¢ - o,) sin(¢_ - e6,)cosgp, 1/2
U = U [ 1 s ——— - S ] (2.65)
sin (¢l x5 ¢O i3 el) Sin( ¢l + ¢° T el)
-1 sin<1>l
¢1 = [ cos¢1 - sin(q)o - el)cosec(¢l + qbo - el) ] (2.66)

Using trigonometric functions Eq. 2.66 can be finally reduced to
$] = *o, -8 (2.67)

Since all the variables in Egs. 2.66 and 2.67 are known once Egs.
2.17 to 2.30 are solved, the L4 required parameters, Py, T3, U] and ¢j,for
solving Eqs. 2.48 to 2.61 are analytically determined. It will be shown later
that in spite of the limitation on the wedge angle (6w < 40°) that was intro-
duced by the use of Eq. 2.64 in the foregoing development, Eqs. 2.66 and 2.67
| can almost always be used since the DMR domain is centred in this angular

range..

2.5.2 Graphical Solution (Shock-Polar Presentation)

The graphical solution of DMR is akin to CMR described in Section
2.4.1. The solution is again done in two steps, first with the frame of
reference attached to the triple point T and then when it is attached to the
gsecond triple point T3;. The relative-motion relations of the second triple
; point T1 wrt the first triple point T are given in Appendix D. Once they are
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known the solution is as follows. ¥irst attach the frame of reference to

the triple point T and draw the I and R-polars (Fig.22a) in the same way as
described in Section 2.3.2. States (2) and (3) are at the poirt where the I

and R-polars intersect. Note that the flow directions in states (0), (1),

(2) and (3) are all measured wrt the first triple point trajectory, i.e.,

8o = 0, since the flow in state (0) moves parallel to the first triple point
trajectory. Consider now Fig. 22b in which 6 and 6' are the angles corresponding
to the same direction measured ir two different frames of reference T and T3,
respectively. Simple geometrical consideration yields:

D
i

~ 9' + (xv - x) (2.68)

or alternatively:.

a2
I

o' + (9, - #)) (2.69)

where ¢o = 90° - By - x and ¢o = 90® - 8y - x' (¢o is given by Eq. D.1k).
Rearranging Eq. 2.69 results in:

o' =0 - (¢ - &) (2.70)

Consequently, state (1) in a frame of reference attached to T7 is at ei = 8 =
(¢o - ¢6) and P; = P; (no change in thermodynamic Properties by changing a
frame of reference). Once state (1') is known, the R'-polar (i.e., the R-polar
in a frame of reference attached to T1) that corresponds to Mj (Eq. 2.65),

P{ = P; and Ti = T; is constructed. States (2') and (3') are at the point
where a constant pressure line drawn from states (2) and (3) intersects the
R'-polar. Once state (2') is known the Rl-polar (Mpr, Por = P2 and Tpr = Tp)
is drawn. States (4) and (5) (Fig. 19) are at the point where the R]l-polar
intersects the R'-polar. The initial conditions for the case illustrated in
Fig.22a are Mg = 3.681, oy =.40®, x = 4.8°, Py = 15.3 torr and To = 297.k4 K.
Consequently the corresponding values for the I polar are Mo = 5.189, Py = 15.3
torr and Tp = 297.4 K. The first triple-point solution results in M; = 1.98k4,
P1 = 239.6 torr, T1 = 1062.2 K, Po = 474.2 torr, To = 1202.9 K, 61 = 32.26°
and ¢3 = 43.10°. Therefore the R-polar that corresponds to M, P; and T; is
drawn from a point 6 = 91 on the I polar. Using the above listed values and
Eq. D.14 results in ¢ = 42.6° and hence (1') is shifted by 2.6° (¢o - ¢g)
from state (1) along a constant pressure line. With the help of Eq. 2.6§ and
the above values one finds that Mj = 0.8237 x M; = 1.634 and the R'-polar

that corresponds to M, P] and T; is drawn from state (1'). States (2') and
(3') are at the point where a constant pressure line drawn from (2) and (3)
intersects the R'-polar, i.e., Por = Po = 4L,74.2 torr. The present solution
fram the R'-polar yields Pp = h7§.2 torr, Tp = 1269.6°, M = 1.125. Conse-
quently a polar corresponding to these values was drawn from states (2') and
(3') to obtain states (4') and (5') or (4) and (5) at the intersection of this
polar with the R'-polar. Note that although To: f To probably due to the use
of Eq. 2.64, the relative error is only 2.55%.
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2.5.3 Prediction of the Second Triple-Point-Trajectory Angle x

The second triple-point-trajectory angle ' can be expressed by
using Fig. D.la as follows:

X' =90° -0 - ¢ (2.70)

Inserting the value of ¢, (Eq. D.14) into Eq. 2.71 results in:

" p
X' =90° - @ - tan 3 [ s = } (2.72)
cotg - 52 cot(qbl = el)
1L

Thus for a set of given initial conditions Po, To, Mg and 6y the value of x

(the first triple-point-trajectory angle) can be calculated using the appropriate
method (given in Section 2.3.1.1). Once x is known, ¢7, 67 and p; can be found
by solving Egs. 2.17 to 2.30. (Note that ¢o = 90° - 6y - x and Mo = Mgcosecgp) ,
and consequently y' can be calculated from Eq. 2.72.

It should be mentioned again that although this method of predicting
x' is limited to gy < L40° (see Appendix D for details) it can be used here
since the DMR-domain exists mainly in this range (see subsequent discussions).
Recall that Apendix Dwas developed in general for the kink K of a CMR as well
as the second triple point T; of a DMR. Consequently this method of predicting
x' is applicable also for a CMR for which x' is defined as the kink trajectory
angle.

2.5.4 Termination of Double-Mach Reflection

Following the gasdynamic reasons for the formation of the kink in a
CMR (i.e., termination of SMR) where the flow in state (2) behind R (Fig. 12)
became supersonic wrt T, and then the formation of DMR (i.e., termination of
CMR) when the flow in state (2) became supersonic wrt K (Fig. 17), one might
assume that if the flow Mach number in state (4) behind M; exceeds the value of
unity wrt the second triple point T; (Fig. 19) a new kink will form on M; and
DMR will terminate. If the flow in state (U4) becomes supersonic wrt this new
kink a triple-Machweflection (TMR) can form.

In order to verify the above hypothesis, reflections must be obtained
using very strong incident shock waves as well as long compression models in
order to allow the shock wave configuration to develop to a significant size.

Unfortunately, experiments with high Mach numbers (Mg > 8) involve
the risk of damaging the interferometric-quality windows. Consequently it was
not possible to verify the existence of TMR in the present facility.

2.6 DNonstationary-Obligue Shock-Wave Reflection in (Ms, 6 )-Plane

The formation and termination criteria for RR, SMR, CMR and DMR
having been established can be shown on the (Mg, 9y)-plane to give the domains
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of the different reflection processes and their boundaries. A necessary
condition for a reflection to occur is that the flow behind the incident shock
wave I must be supersonic (M} > 1) wrt the reflection point P (in the case of
RR) or the triple point T (for the other reflections) (Figs. 4a and Wb, respec-
tively) . Thus the (Mg, 6w)-plane [(Mo, ¢o)-plane] can be divided into two major
domains. One of them corresponds to Mj < 1, where shock-wave reflection is not
possible and the other corresponds to M3 > 1 where shock reflections occur.

This region of shock-wave reflection is then divided into four domains corre-
sponding to the four reflection processes, i.e., RR, SMR, CMR and DMR.

The criterion for predicting the termination of RR makes use of the
boundary condition that the flow downstream of the reflection point (Fig. 7)
must be parallel to the wall, i.e., 6o + 61 = O (Eq. 2.9). When this condition
is violated (i.e., ¢o increases to a point where @) exceeds the detachment angle
(92m) in state (l) (Fig. 7), RR terminates. Therefore, the termination critericn
is:

0, + 62y = O \2.73)

When RR terminates, 3 different types of reflection, i.e., SMR, CMR
and DMR, can occur depending on the Mach number of the flow behind the reflected
shock wave R. As long as the flow behind R is subsonic wrt the first triple
point T, an SMR occurs. When this flow becomes supersonic wrt T, SMR terminates
and a CMR forms. Consequently, the termination criterion for SMR and the forma-
tion criterion for CMR is:

M, =1 (2.74)

CMR terminates when the flow behind R becomes supersonic wrt the kink K. There-
fore the termination criterion for CMR and the formation criterion for DMR is:

M =1 (2.75)

It is worthwhile mentioning that the line Mé = 1 corresponds approximately to
Mo = 1.30 in both nitrogen and argon. Alternatively one may use the following
empirical criteria for the existence of SMR, CMR and DMR in nitrogen and argon.
SMR occurs only if:

M, <1 (2.76)
A CMR takes place when:
1<M,<1.3 (2.77)
A DMR results for all
M, > 1.3 (2.78)

In the following the domains of RR, SMR, CMR and DMR in the (Mg, ew)-
plane are given. Note that 9w 6w + x in the domains of SMR, CMR and DMR
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while in the RR domain ew = 8y since x = 0 by definition. Note also that
since Mo = Mg secew and ¢o = 90° - e one might assume that the reflection
domains apply to steady flows as wel1 However, it will be shown later that
in a steady flow CMR and DMR cannot occur due to geometrical limitation, and
that the termination criterion of RX is differert to that described by Eq.
2.73. Therefore the following domeirs arz for nonsSationary flows only.

2.6.1 Regions and Transition Boundaries in & Diatomic Gas-Nitrogen

The domains of RR, SMR, CMK, DMR and NR and the boundaries between
them in the (Ms, ew)-plane for nltrogen are shown: in Fig. 23. The dashed
boundary lines are for a perfect gas (y = 1.4) while the solid lines account
for real-gas effects (vibration, rotation—v:bvatlo coupling and dissociation)
with four different initial pressures: Po = 1, 10, 100 and 1000 torr and &
constant initial temperature Ty = 300. It can be seen that the imperfect-gas
boundary lines start to diverge from those of a perfect gas at very low
incident shock wave Mach numbers owing to temperature-dependent vibrational
excitation. At higher values of Mg each boundary line splits and diverges
according to its initial pressure as a result of dissociation. At still higher
shock Mach numbers electronic excitation and ionization would play a similar
role. Under such conditions the sharp boundary lines which exist for a perfect
gas between the domains of the different types of reflection are replaced by
a multiplicity of lines depending on the initial pressure. For example, one
should expect an RR for Mg = 10 and 6y = 45° when the initial pressure is 1000
torr or more and a DMR when Po = 100 torr or less. As Mg approaches unity the
line g3 + 9@ approaches the line M3 = 1.00. These two lines are coincident
at the orlgln Mg =1, ew = 0.

It can be seen from Fig. 23 that if the shock Mach number Mg is
fixed while varying the effective wedge angle e& (i.e., the actual wedge angle
By) » then different domains of reflection are encountered. This figure clears
up some problems and disagreements between vearious investigators who reported
different sequences of events as one passed through a range of wedge angles
By for a fixed Mg. They were unaware of the domains and boundaries presented
in Fig. 23. The different sequences of events (and experimental and numerical
investigations) are summarized as follows: 1.00 < Ms < 1.60 (see point a)

RR — SMR (Bleakney and Taub, Ref. 10), 1.60 < Mg < 2.69 (see point b), RR —
CMR — SMR (Smith, Ref. 6), for Mg > 2.69, RR —+DMR —9CMR —-SMR (Kutler et al,
Ref. 63, and Shankar et al, Ref. 64). RR and SMR can occur with a proper
choice of oy (or ey) for any incident shock wsve Mach number Mg, while the
other reflections are limited to defined values of Mg, e.g., CMR occurs only
for Mg > 1.60 (see point a) and DMR only for Mg > 2.69 (see point b).

2.6.2 Regions of Transition Boundaries in a Monatomic Gas-Argon

The domains of RR, SMR, CMR, DMR and NR, and the boundaries between
them in the (Mg, 6y)-plane for argo“ are shown in Fig. 24. The dashed boundary
lines are for a perfect gas (y = 5/3) while the solid lines account for real-gas
effects (electronic excitation and ionization) with four different initial
pressures: Pgo =1, 10, 100 and 1000 torr =znd a constant initial temperature

= 300 K.

Unlike a diatomic gas (Fig. &3) the imperfect-gas boundary lines
start to diverge from those of a perfect gas only at relatively high incident
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shock wave Mach numbers. Therefore, the perfect-gas theory is adequate in the
range Mg < 5.36 for Py, > 1 torr, To = 300 X (the point where the RR imperfect-
gas boundary lines start to diverge). It should be noted, however, that as the
initial pressure (Po) decreases the corresponding imperfect-gas boundary line
splits at a lower value of Mg. For example, the imperfect-gas boundary lines
for the termination of SMR (Mo = 1) split at Mg = 7.62, 8.15, 8.50 and 8.77

for Po = 1, 10, 100 and 1000 torr, respectively. Therefore, the sharp boundary
lines which exist for a perfect gas between domains of different reflections
are replaced by a multiplicity of lines depending on the initial pressure (when
tpe temperature is fixed). Consequently, one can expect an SMR for Mg = 10 and
8w = 30°® when P, > 100 torr and a CMR when P, < 100 torr.

It can again be seen from Fig. 24 that if the incident shock wave
Mach number is fixed while varying the effective wedge angle e& (or ew), different
domains of reflections are encountered. The different sequences of events are:
1.00 < Mg < 1.85, RR - SMR (point a), 1.85 < Mg < 3.17, RR -»CMR —SMR (point b),
for Mg > 3.17, RR -+DMR »CMR —»SMR. RR and SMR can occur with a proper choice
of gy (or ew) for any incident shock wave Mach number Mg, while the other
reflections are limited to definite values of Mg, e.g., CMR can occur only for
Mg > 1.85 (point a) and DMR only for Mg > 3.17 (point b).

3. FLOW DEFLECTION PROCESS OVER A WEDGE CORNER

It has been mentioned earlier (Section 2.1) that the diffraction
process in nonstationary flows also depends on the flow-deflection process of
the flow induced by the incident shock wave over the corner.

Consider a planar shock wave propagating in a shock tube and denote
the state behind it as (2'). For any given set of initial conditions (P, T,)
and incident shock wave Mach number Mg, the induced flow Mach number Mp' as
well as the pressure and temperature ?ng and To') can be calculated. Conse-
quently, the corresponding sonic deflection angle ggo+ and the angle of maximum
deflection (detachment angle) 6mpr Can be determined.

Thus the (Mg, 6y)-plane is now divided into two main regions; one
corresponds to Mpo' < 1, where the induced flow is subsonic and hence turns
over the corner subsonically (Fig. 5a), and the other corresponding to Mpt > 1
where the flow is supersonic. The latter region is subdivided into three regions
of different flow deflection processes (Ref. 36);

(1) o<ey, < Bso: for deflection through a straight and attached oblique shock
wave (Fig. 5b).

(2) egpr < ey < fmy, for deflection through a curved and attached shock wave
(Fig. 5¢).

(3) oy > s where the deflection is through a curved and detached shock
wave (Fig. 5d).

Since the maximum separation between empor and 6gor is usually very small (for
nitrogen at Po = 15 torr and T, = 300 X, emp' - 6gpr = 0.63®) only two regions
0< gy < fmo » where the shock wave is attached, and gy > Omo + s where the shock
wave is detached, need be considered for practical purposes.
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3.1 Flow Deflection Process in a Diatomic Gas - Nitrogen

The above-mentioned regions of different types of deflection processes
for nitrogen are shown in the (Mg, 8,)-plane in Fig. 25. The dashed line is
for a perfect gas (y = 1.4), while the solid lires are for imperfect nitrogen
with different initial pressures (Py = 1, 10, 100 and 1000 torr) and fixed
initial temperature (T, = 300 K). One should note that the line Mpr = 1 corre-
sponds to Mg = 2.068 (for a perfect gas) and 2.055 when vibrational energy is
included. Since the difference between these two values of Mg is too small %o
be plotted, only one line is shown. It can be sesn from Fig. 25 that the
deflection process depends strongly on real-gas effects (i.e., initial pressure
Po for a given temperature Tp). For Mg = 10 and 6, = 35° the flow will nego-
tiate the corner through a detached shock wave if Py < 1 torr or through an
attached shock wave if Po > 10 torr.

Since the imperfect-gas boundary line diverges from the perfect
gas even at the lowest value of Mg ore must conclude that the perfect-gas
theory is not adequate and imperfect-gas theory should be used.

3.2 Flow Deflection Process in a Monatomic Gas - Argon

The regions of different types of reflection processes for argon
in the (Mg, 6w)-plane are shown in Fig. 26. Again the dashed line is for a
perfect gas (y = 5/3) while the solid lines are for imperfect argon with
different initial pressures (Po = 1, 10, 100 and 1000 torr) and a constant
initial temperature (T, = 300 K).

Unlike the case of a diatomic gas (see Fig. 25) the imperfect-gas
boundary lines start to diverge from the perfect-gas lines at quite high values
of Mg (i.e., Mg = 7.36) and consequently the perfect-gas theory is adeguate
in the range Mg < 7.36. It is worthwhile mentioning that the line Mpr =1
corresponds to Mg = 2.758 for both perfect and imperfect gases.

The dependence of the deflecticn process on real-gas effects (at
high values of Mg) is again clearly seen (Fig. 26). For Mg = 10 and 6y = 10°
the flow will negotiate the corner through an attached shock wave if Po < 10
torr or through a detached shock wave if Py > 100 torr. Note that unlike
a diatomic gas (Fig. 25) the region that corresponds 5o a deflection with the
aid of an attached shock wave is very smell compared to the regiors of detached
shock wave and subsonic turning. Therefore, in general (unless the wedge
angles are very small and the initial pressures very low), only two flow
deflection processes will be observed, i.e., a subsonic turning over the corner
or a turn with the aid of a detached shock wave.

4. SHOCK-WAVE DIFFRACTION PROCESS IN NONSTATIONARY FLOWS

The two independent phenomens discussed in the previous chapters,
i.e., shock reflection (Section 2) and fiow deflection (Section 3) interact
and give rise to the overall shock-wave diffraction phenomenon. To show this
process the figures corresponding to shock-wave reflection (Figs. 23 and 24
for nitrogen and argon, respectively) and the figures for flow deflection
(Fig. 25 for nitrogen and Fig. 26 for argon) are superimposed. However, the
vertical axis of Figs. 23 and 24 and that of Figs. 25 and 26 are different.




In Figs. 23 and 24 the vertical axis is e& while in Figs. 25 and 26 it is
pw. The effective wedge angle oy equals @, (the actual wedge angle) in the
RR-regime and ey + x elsewhere. Thus, the triple point trajectory angle y
should be subtracted from the appropriate curves of Figs. 23 and 24 prior to
any superposition.

The interaction between the shock-wave reflection phenomenon and the
induced-flow deflection process causes the reflected shock wave R to curl back
towards the model and terminates at the wedge corner on the shock-tube wall.
Since the shock-wave configuration is growing with time, the point where R
terminates at the shock-tube wall moves towards the oncoming shock-induced
flow, therefore increasing the oncoming relative flow Mach number. Consequently,
the subsonic turning region shown in Figs. 25 and 26 cannot be established in
nonstationary flows. At the limiting case of a degenerated incident shock wave
(Mg = 1) the reflected shock wave becomes a Mach wave. Therefore, as there are
four reflection processes (RR, SMR, CMR and DMR) and two deflection processes
(an attached or detached shock wave) , a maximum of eight different shock-
diffraction systems are possible.

In Section 2.3.1.1 two methods of predicting x were suggested. The
first one is due to Law and Glass (Ref. 51), where straight Mach stem (normal
to the wedge surface) is assumed, and the second, developed here, makes use
of the experimental fact that shock-wave reflections occur even at very low
wedge angles when the flow Mach number behind the incident shock wave I (Fig.
4b) is much smaller than unity (M; < 1) wrt the reflection point. The methods
were discussed in detail in Section 2.3.1.1. Consequently only the results,
i.e., x = x(6ws Ms, Po, To) for nitrogen and argon will be presented in the
following.

4.1 Triple-Point-Trajectory Angle in a Diatomic Gas - Nitrogen

The present analytical extension of the graphical method by Law and
Glass (Ref. 51) for predicting the triple-point-trajectory angle x was applied
to obtain Figs. 27 to 31.

The triple point trajectory angles y as a functign of the incident
shock wave Mach number Mg with the effective wedge angle @, as a parameter for
a constant Py and To shown in Fig. 27. The dashed lines are for a perfect
gas (y = 1.4) while the solid lines are for an imperfect gas. Since %the
perfect-gas model results in no reflection for gy = 22.2° (see Fig. 23) only
a solid line (i.e., imperfect gas) is shown for this effective wedge angle.

It can be seen that the perfect gas result yields values of x greater than

for an imperfect gas. At low Mach nunbers the imperfect-gas lines approach
those of a perfect gas. At higher Mach nunbers and lower e& the dependence of
x upon Mg becomes stronger for an imperfect gas due to dissociation. However,
for a perfect gas x is almost independent of Mg. (Note that at higher Mg the
dashed lines level out.)

At oy = 40°, the perfect gas gives an almost constant value of x through-
out the entire region of Mg. In other words, one might conclude that a wedge
angle exists for which y is independent of Mg (a constant). This fact is more
clearly illustrated in Fig. 28 showing the variation of y with gy for a given Mg.
Only 3 lines (Mg = 4, 7 and 10) are drawn for clarity. Note that all 3 lines
intersect practically at one point (ey =~ 35.05°, y ~6.45 and @y = 41.50°).
A reproduction of Fig. 28 for imperfect nitrogen is shown in Fig. 29; again only
3 curves are given (Mg = 4, 7 and 10). The lines corresponding to Mg = 4 and 7
intersect at @y = 45.38° and y = 3.30° (i.e., ow = 48.68°). A comparison between
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imperfect and perfect gas results is shown in Fig. 30. Only the lines that
correspond to Mg = 10 are shown. I% can be clearly seen that the value of yx
predicted using a perfect gas is greater than for an imperfect gas.

The dependence of y on Mg and SH is shown in Fig. 31. The dashed
lines are again for a perfect gas (7 = 1.4) while the solid lines are for
imperfect nitrogen. It can again be seen that the perfect gas values of y
are higher than those predicted by the imperfect gas theory. The discrepancy
between the two values (i.e., perfect and imperfect nitrogen) increases as

Ms increases and py decreases. Again the perfect gas lines level out at

high Mach numbers and y is almost independent of Mg or y = y(ey) only.

Law and Glass developed this method of predicting y and found that
it agrees with experiments only in the range 25® < gy < 45° (hef. 539 . T6
will be shown later that during the present research their method was found

to be in good agreement with experiments in a much larger range of wedge

angles 5° < 6, < 45°. This, we believe, is due to the fact that they solved
Egs. 2.17 to 2.31 graphically, while during the present study an analytical
solution was obtained. Their graphical solution was rechecked and verified.
Since their method was found to be good in the range 5° < 6w < 45° an alter-
native method was developed for the range gy < 5® which was described in detail
in Section 2.3.1.1. The results are as follows.

Figure 32 represents the variation of the triple point trajectory
angle x with the incident shock Mach number Mg and the actual wedge angle
6w, as a parameter, for very small wedge angles (@y < 5°). Note that
although Fig. 32 is based only on the experimental fact that SMR occurs even
for very low wedge angles (i.e., y should be }arge enough to keep e; above
the line My =1 of Fig. 23; recall that y =g, - 6y), it resembles the
characteristics of Fig. 31, for small wedge angles 5°< Oy < 203 that results
from physical considerations. In both figures x is a decreasing function with
increasing Mg and 6y and while, for the imperfect gas model, the dependence
of y upon Mg is prominent as Mg increases due to dissociation, the perfect
gas lines (dashed) level out so that y becomes nearly independent of Mg, i.e.,
x = x(ew) only (Figs. 31 and 32).

4.2 Triple-Point-Trajectory Angle in a Monatomic Gas - Argon

The dependence of x on Mg for fixed e& is shown in Fig. 33. The
solid lines for imperfect argon in ionizational equilibrium start to diverge
from the perfect-gas lines y = 5/3 (dashed) slightly above Mg = 7. Conse-
quently, in the range 1 < Mg < 7 the perfect-gas solution is adequate.

The pe{fect-gas lines level out as Mg increases making y independent
of Mg on y = X(ew) only. This can be more clearly seen in Fig. 34, in which
x is plotted against gy for fixed values of Mg. For clarity only 3 lines
are drawn (Mg = 4, 5 and 10). All the lines intersect practically at one
point, gy = 29.87%, x = 10.22° (i.e., ow = 40.09%). This value differs very
ﬁlight§y from the corresponding value of a diatomic gas found earlier (@y =

1.50°).

A similar plot for imperfect argon is given in Fig. 35. Again only
3 lines (Mg = 4, 7 and 10) are shown. Only two lines, those corresponding
to Mg = 4 and 7 intersect (at ew = 32.72°, x = 8.83%, gy = 41.55°). Therefore
a wedge angle Ow does not exist for which x is completely independent of Mg.
A comparison between perfect and imperfect argon is shown in Fig. 36. It can
be clearly seen that the value of y predicted by perfect-gas theory is larger
than the one for imperfect argon.
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The dependence of x on M for giver gy is shown in Fig. 37. Agair
the imperfect argon (solid line) starte to diverge from the perfect gas values
= 5/3 (dashed lines) only for Mg > 7. Therefore the perfect gas values are
adequate in the range 1 < Mg < 7. The perfeci-gas lines level out as Mg
increases, giving x = X(Ew) only. However, electronic excitation and ioniza-
tion start when Mg > 7 and the depender.ce of y upon Mg increases for imperfect
argon.

The previous method for very low wedge angles was also used for argon
%o obbtain Fig. 38. The solid lines ara for imperfect argon ir. ioriszation
equilibrium while the dashed lines are for a perfect monatomic gas. It can
again be seen that for Mg > 2, x is a decreasing function of Mg ard 6y, while
for imperfect argon the dependence on Mg becomes strong at Mg > 7 when ioniza-
tion starts. The perfect-gas lines (Fig. 38, dashed lires) level out and x
becomes independent of Mg or x = X(Gw) mhls type of behaviour is similar
to the results that were obtained using the method of Law and Glass (Ref. 51)
as shown in Fig. 37.

4.3 Domains of Shock-Wave Diffractions in a Diatomic Gas - Nitrogen

Figures 23 (with x subtracted) and 25 were superimposed to obtain

Fig. 39. Only the boundary line corresponding to Po = 15 torr is reproduced.
Out of a maximum of eight possible shock-wave diffractions only seven are
obtained in the range 1 < Mg < 10. The unobtainable diffraction is an RR
with an attached shock wave at the wedge corner. Note that if the lines

81 + 82y = O and the attached/detached lines are extrapolated beyond Mg = 10
they might intersect, and hence an RR with an attached shock wave could be
obtained. The seven different shock wave diffractions in the range 1 < Mg < 10
appear in Fig. 39 and are listed in Table 1. They consist of an RR with a
detached shock wave (region 1), SMR having a detached or attached shock wave
(regions 2 and 3, xespectively); CMR with deflection through a detached or
attached shock wave (regions 4 and 5, respectively); and finally DMR with a
detached or an attached shock wave (regions € and 7, respectively).

4.4 Domains of Shock-Wave Diffractions in a Monatomic Gas - Argon

Figures 24 (with x subtracted) and 26 were superimposed to obtain
Fig. 40. Only the lines corresponding to Po = 15 torr are reproduced. In
the range 1 < Mg < 10 this time only six diffractions out of a maximum of eight
are possible. The two unobtainable diffractions are an RR and a DMR w1th an
attached shock wave at the corner. However, if the lines 61 + 82y s My =
1.00 and the attached/detached line (6y = 6m,:) are extrapolated beyo:d Mg = 10,
the two former lines might intersect the latfer ons, resulting in the missing
two diffractions. The six different shock-wave diffractions in the range
1 < Mg < 10 are RR with a detached shock wave (region 1); SMR with a detached
or an attached shock wave (regions 2 - and 3, respectively); CMR with a
detached or an attached shock wave (regions 4 and 5, respectively); and
DMR with a detached shock wave (region 6) The six different diffractions
are shown in Fig. 4O and listed in Table 2.
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5. OBLIQUE SHOCK-WAVE REFLECTION IN STEADY FLOWS
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Prior to the present study it was accepted among most researchers
that the shock wave reflection phenomenon in the nonstationary case is equi-
valent to the reflection process in steady flows, once a frame of reference
is attached to the triple point in SMR or the reflection point in RR (Fig. u4l).
However, since several differences have already been pointed out throughout
( this report it is of interest to summarize the phenomenon in steady flow as
I well as to compare the steady and nonstationary shock-wave reflections. Note
that one cannot use the term "diffraction" in steady flows as only reflection
takes place.

When a steady supersonic flow encounters a wedge with an angle @)
(Fig. 42) it will be deflected by an oblique shock wave I through an angle 6)
to become parallel to the deflecting surface. The angle of incidence ¢y as
well as all the thermodynamic and dynamic properties of state (1) behind the
oblique shock wave I are defined by P, Tg, My and 6). If the flow behind the
oblique shock wave I is supersonic (M; > 1) a reflected shock wave occurs to
turn it away from and make it parallel to the wall. It is an experimental
fact that the weak solution is the one that occurs. Consequently M) will be
greater than unity.

If the value of @) (see Fig. 42) ic smaller than the maximum deflec-
tion angle 82y of the flow in state (1) an RR occurs (Fig. 43a), while for i
92 > 92 an RR is not possible and an SMR occurs (Fig. 43b). It is not assumed
that this is the transition criterion from RR to SMR. Note that an RR or an
SMR can also be obtained other than from a rigid wall by the intersection of
two obligue shock waves (generated by two wedges in a steady supersonic flow)
as shown in Figs. Lla and LUb. Actual interferograms of RR and SMR in a
supersonic wind tunnel are shown in Figs. 45a and 45b (standard interferogram)
and Figs. 46a and L6b (infinite fringe interferogram). (We are indebted to
Dr. H. G. Hornung of the Australian National University for supplying us with
these interferograms; see Ref. 77.)

It was noted in Section 2.2.3 that the termination criterion for RR
in steady flows is different from a nonstationary flow (Refs. 65 and Th).
While in nonstationary flows, the "detachment" criterion or the "sonic"
criterion (Egs. 2.14 and 2.16, respectively) is used (Fig. 2a, Rjy). In steady ,
flow, Hornung and Kychakoff (Ref. 65) verified Henderson and Lczzi's (Ref. 60) 1
"mechanical-equilibrium" criterion, described by Eq. 2.15 (Fig. 2a, Rjj). It :
should be noted, however, that Hornung and Kychakoff's general criterion for
the transition RR — SMR includes both specific criteria of steady and non-
stationary flows.

5.1 Types of Reflection Obtainable

It is an experimental fact that only SMR and RR have been obtained
in steady-flow wind-tunnel experiments. It is suggested that the reason lies
in the experimental set-up used to obtain oblique shock-wave reflections in
steady-flow experiments. Recall that the reason for the termination of SMR
and formation of CMR and later DMR in the nonstationary case is that the flow
behind the reflected shock wave R becomes supersonic wrt the triple point T
(Mé > 1) while it is directed towards the wedge surface (see discussion in
Section 2.4). In the steady case, the flow in state (2) is always interrupted
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by either an expansion wave or a reflected shock wave (Figs. 47a and 47b,
respectively), which arises from the wedge used to generate the incident
oblique shock wave I. Thus the flow in state (2) behind the reflected
shock wave is prevented from reaching the wedge surface again. Therefore
the need to turn $his flow away from the wall is eliminated. Consequently,
in steady flows unlike nonstatiopary flows i%t is possible to have SMR with
supersonic flow behind the reflected wave.

5.2 Steady Oblique Shock Wave Reflection in (Mo’ ¢o)-Plane

In steady flows the parameters Mg and 6y which were used for
nonstationary flows cease to be significant. Instead the flow Mach number
in state (0), Mo and the flow incidence angle ¢o to the oblique shock wave I
are used. Consequently the reflection phenomenon is described in the

(Mo, ¢o)-plane.

5.2.1 Steady Flow Regions and Transition Boundaries in a Diatomic Gas - Nitrogen

The domains of different types of oblique shock wave reflection in
nitrogen are shown in Fig. 48. The solid boundary lines account for real-gas
effects, while the dashed lines are for a perfect diatomic gas (y = 1.4).

The (Mo, ¢g)-plane is divided into 3 domains of RR, SMR. and NR. The signi-
ficance of real-gas effects on shifting the boundary lines can be clearly
seen. The perfect-gas theory can be used only in the narrow range 1 < Mg < 2.22.
At Mo = 2.22 the imperfect-gas lines start to diverge from the perfect-gas line
due to vibrational excitation. At higher Mach numbers (Mo > 8.6) the imperfect-
gas line splits into a multiplicity of lines for different initial pressures at
constant temperature due to dissociation. At even higher Mach numbers electronic-
excitation and ionization would play a similar role. When My approaches unity
the line 81 % 62 = 63 = O approaches the line Mj = 1.00. These two lines are
coincident at Mp = 1 and ¢o = 90°.

5.2.2 gteady Flow Regions and Transition Boundaries in a Monatomic Gas - Argon

The domains of SMR, RR and NR for argon are shown in Fig. 49. The
solid lines are again for imperfect argon while the dashed lines are for a perfect
monatomic gas (y = 5/3).

Unlike the case of a diatomic gas where the perfect-gas theory was

- adequate only for very small values of My (Mo < 2.22, Fig. 48), here (Fig. 49)

it can be used over a much wider range, 1.00 < Mo < 8.95. At Mp = 8.95 the
imperfect-gas boundary line splits with initial pressure (at constant tempera-
ture) due to electronic excitation and ionization. Consequently one can expect
an SMR when Mg = 16, ¢o = 30° and Po > 10 torr, while an RR will be obtained if
Po < 1 torr.

5.3 Comparison Between Steady and Nonstatiomery Shock Wave Reflection

It has already been mentioned that in spite of the similarity between
shock-wave reflection in steady and nonstationary flows, several differences
exist between them. Therefore it is worthwhile to summarize these differences.
The first and most important difference lies in the fact that the shock-wave-
reflection process in the nonstationary case always interacts with the flow
deflection process over the corner, while in steady flows only reflection occurs.
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Consequently, unlike that in steady flow, an NR domain exists in the (Mg, ¢o)-
plane (Figs. 48 and 49); in the nonstationary case, there is no actual MR
domain (Figs. 39 and 40) in the (Mg, 6y)-plane. Recall that in the nonstationary
case, a reflection occurs even when the flow behind the incident shock wave I
becomes subsonic wrt point P (Fig. 4a) due to the interaction with the flowe
deflection process (Fig. 4b). In the steady flow case only one reason exists
for shock-wave reflection, i.e., a need to turn the supersonic flow moving
towards a solid surface (Fig. 42). In the nonstationary case there are two
reasons. The first is analogous to the steady case and holds for Mj > 1

(Fig. 4a), while the other applies to My < 1 (Fig. 4b). Note that in steady
flows M] < 1 yields no reflection (NR). A more detailed discussion of these
two reasons is given in Section 2.1.

In Section 2.2.3 it was noted that the termination criteria of RR
are different for steady and nonstationary flows. In nonstationary flows either
the "detachment" criterion (Eq. 2.14) established by Neumann (Refs. 2, L4) or the
"sonic" criterion (Eq. 2.16) established by Hornung and Kychakoff (Ref. 65) holds,
while in steady flow the "mechanical-equilibrium" criterion (Eq. 2.15), established
by Henderson and Lozzi (Ref. 60) and Hornung and Kychakoff (Ref. 65), applies.

Once RR is terminated three different types of reflection can occur
in nonstationary flows, i.e., SMR, CMR and DMR. In steady flows, however, CMR
and DMR cannot occur due to the geometrical limitations used to obtain the
reflection (see discussion in Section 5.1) and hence only an SMR is possible.
It should be noted, however, that while in steady flow one can have an SMR
with supersonic flow behind the reflected shock wave, in nonstationary flows
SMR is terminated when the flow behind the reflected wave becomes supersonic.

The interaction between the shock-wave-reflection process and the
flow-deflection process in nonstationary flow results in a three-shock con-
fluence where the reflected wave R, Mach stem M and slipstream S are usually
curved (not in the vicinity of the triple point where they are all straight,
see Ref. 53). In steady flow, these shock waves and slipstream are usually
straight, and hence the flow regions bounded by them are much more uniform
than those in the nonstationary case. One should note that in steady flow
the slipstream never curls back, a typical property of nonstationary reflec-
tions.

dh b ) ot

Due to the fact that the incident shock wave in nonstationary reflec-
tions always moves into a quiescent flow, the reflection point (Fig. U4a) is
always independent of the boundary-layer growing behind it. However, in steady
flow the boundary-layer effects depend on the geometrical set-up used to obtain
the reflection. A severe boundary-layer interaction is eliminated if the inter-
section of shock waves is used to obtain the reflection (Figs. 4ha and Llib).

The triple-point trajectory angle x has no physical meaning in steady
flows, where the configuration is fixed wrt time, i.e., does not grow linearly
with time. However, in steady flow the length of the Mach stem can be regarded
as a similarity parameter. So far a theory for predicting the length of the
Mach stem has not been published. The equations of motion (Egs. 2.17 to
2.30) are all satisfied if one moves the triple point to any point along the




incident shock wave (Fig. 50) and draws the corresponding reflected shock
wave R¥, Mach stem M¥ and slipstredm S*¥. However, repeated experiments for
the same initial conditions and geometrical configurations provide identical
shock-wave configurstions. This suggests that the factors governing the
reflection process in steady flow are related to the waves emanating from the
wedge (Figs. 47a and 47b). It should be noted here that Molder (Ref. 76)
developed a theory for the reflection of curved shock waves in steady flows,
using the assumption of constant curvature, by which the length of the Mach
stem can be determined analytically. However, his theory fails to predict the
length of the Mach stem in the case of the reflection of straight shock waves.
(owing to the lack of experimental data on the reflection of curved shock waves,
Molder's analysis remains unsubstantiated.)

The incident shock wave was observed to be accelerating somewhat when
it passed over the compression model in the test section. A constant-velocity
shock wave was measured when the model was removed. The reason for this accelera-
tion is not known. Although this acceleration is usually very small it might have
an influence on the reflection process. Consequently Egs. 2.1 to 2.9 for an RR
and Egs. 2.17 to 2.30 for the triple point T describe the reflection phenomenon
in steady flows better than they do in nonstationary flows, where the flow Mach
number My ahead of the incident shock wave [state (0)] changes slightly as the
incident shock wave accelerates, i.e., Mg increases.

6. EXPERIMENTAL TECHNIQUES AND INSTRUMENTATION

The UTIAS 10 cm x 18 cm Hypervelocity Shock Tube (Ref. 32) was used
to generate the incident shock waves. An updated and detailed description of
the entire facility, its performance maintenance and operational techniques is
reported in Ref. 71. Therefore in the following only a brief discussion is given.

The cold runs wereused to generate the shock waves in the range 2 <
Ms < 8 of the present study. The initial conditions, i e., the pressure ratio
across the mylar diaphragm and the driver gas combinations used to obtain
different incident shock waves into nitrogen and argon are given in Tables 3
and 4, respectively The shock wave Mach numbers, Mg, given in Tables 3 and
4 represent the average values obtained throughout the present study. Conse-
quently, the initial conditions listed in Tables 3 and 4 will produce, in
general, shock waves in the range Mg + 0.1 of the predicted value. The initial
pressures Po in the range 5.00 < Pp < 65.00 torr were monitored with two Wallace
and Tiernan type FA 160 (0-50 torr and 0-200 toir) dial gauges. A more accurate
measurement of Pp was made using an oil manometer (0.2-40 torr). :

The nonstationary process was recorded using a 23-cm dia field of
riew Mach-Zehnder interferometer (Refs 21, 71) The light source was a
giant-pulse ruby laser (Ref 7%) Simul taneous dual-frequency interferograms
were taken at 69l+3§ and 3471.5A, respectively. Kodak, Royal X Pan (1250 ASA),
10 x 13 em (4 x 5 inch) plate film was used to record the interferograms.

A schematic instrumentation diagram of the equipment used throughout
the present study is shown in Fig. 51. When the shock-wave arrives at station
D, time-counters 1, 2, 3, 4 and 5 are triggered simultaneously. (Note that
these 5 counters are connected to a common external l-megacycle oscillator,
and hence have a uniform time base of l-microsecond resolution.) These 5
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counters then stopped in succession as the shock wave passed subsequent
detectors at stations F, G, H, I and J. An additional counter (No. 7) was
used between stations I and J to indicate the time taken for the shock wave

to travel past the test section. Since the shock wave velocity changes

- somewhat due to the convergence of the cross section caused by the model
(Refs. 39 and L46), the measurement of counter No. 7 was used only as a monitor
of the shock location.

The control of the laser light source operation is also included in
Fig. 51. The laser flashlamp capacitor bank was usually triggered by the shock
arrival at station F, suitably delayed in a Tetronix type 555 oscilloscope to
get 900 psec of energy pumping by the time the Pockels-cell shutter opened.
The Pockels cell Q-switch was always triggered from station I, delayed correctly
in a pulser delay unit to take the interferograms at a desired time (or location
of the shock wave wrt station I).

To monitor the actual flashlamp pumping time in each experiment,
synchronization pulses from both the flashlamp capacitor bank and the Pockels-
cell pulser unit were used to start and stop, respectively, a UTIAS microsecond
counter (Fig. 51, Counter No. 6).

As an additional check on shock-tube performance in each experiment,
a Kistler type 601-B, piezo-electric pressure transducer was used to monitor
the pressure variation with time behind the incident shock wave. The transducer
output was taken directly to a charge amplifier (Kistler, Model 504) with a
final signal displacement on the designated oscilloscope (Fig. 51).

6.1 Accuracy of Measurements

A detailed description of the absolute errors associated with the
various measurements involved in the operation of the shock tube facility
is given in Ref. 7l. Consequently, only a brief summary follows.

6.1.1 Incident Shoeck Wave Mach Number - M.s

The meximum possible relative error in calculating the incident
shock wave Mach number was (Ref. 71):

E(M)

i g - (1.15 M+ 10.18) x 1073 for nitrogen (6.1)
S

E(M )

5 S = (1.05 x M +10.18) x 1003 for argon (6.2)
S

Consequently, in the range of incident shock wave Mach numbers used in the
present study, 2 < Mg < 8, E(Mg) = 0.02 for both nitrogen and argon at the
lower end (Mg = 2) while for Mg = 8, E(Mg) = 0.16 and 0.15 for nitrogen and
argon, respectively. Equations 6.1 and 6.2 are shown in Fig. 52a. It can be
seen that the relative error E(Mg)/Ms increases linearly as Ms increases.
Consequently the absolute error E(Mg) is proportional to Msa.
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6.1.2 Initial Pressure P, and Temperature T

Initial pressures in the range 5 < Po < 40 were measured with an oil
manometer. The pressure Po is calculated from (Ref. 71):

Poiy H(mm)

Fo = T13.5051 (6.3)

where H is the oil-height difference in mm as measured in the manometer, and
Poil 1s the density of the oil and it is given by:

Boyi ™ 1.0690 + 9.5 x 10'1‘t (25-T) (6.4)

T, the soil  tayperature,; was assumed to be equal to the laboratory temperature
measured near the manometer (T = Tp). The absolute error associated with the
initial pressures is then (Ref. T71):

E(P) =[1.k x 1072 H(mm) + 7.86 x 10727 torr (6.5)
E(Py) = ]

Consequently, the maximum possible errors associated with lowest (5 torr) and
highest (37 torr) pressures that were measured with the oil manometer are 0.08
torr and 0.09 torr, respectively.

Pressures in the range Po > 4O torr were measured with a Wallace
and Tiernan type FA 160 (0-200 torr) within an accuracy of * 0.2 torr and
hence the maximum possible error was E(Py) = 0.4 torr. A plot of the absolute
error involved in the pressure measurements in the present study 5 < Po < 65
is given in Fig. 52b. v

The initial temperature To was measured to an accuracy of * 0.1° with
a standard mercury bulb thermometer inserted in a 5 cm deep, 6 mm dia oil-filled
port in the upper wall of the shock tube. Consequently, an error E(@) = 0.2°
was associated with all temperature readings.

7. EXPERIMENTAL RESULTS AND DISCUSSIONS

The above discussed facility was used to obtain and record non-
stationary oblique shock-wave diffraction in nitrogen and argon. Fifty-eight
successful experiments were made in nitrogen, with 9 different compression
corners (wedges) having ey = 2°, 5°, 10®, 20°, 26.56°, 30*, 40°®, 50® and 60°.
In the case of argon 48 successful experiments were performed with 7 different
wedge angles,ow = 2°, 10®, 20°, 30°, 4O®, 50°® and 60°. All angles had an
accuracy of + 0.0167.

Unfortunately, due to mechanical limitations wedge angles lower than
2° could not be machined. Wedge angles greater than 60® were not of interest
as they would have resulted in RR, thereby not adding any important data. The
incident shock wave Mach numbers Mg, wedge angle 6, and initial pressures and
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and temperatures (Po and To) associated with each experiment are listed in
Table 5 for nitrogen and Table 6 for argon. These tables also include the
experimental values of the primary and secondary triple point trajectory
angles x and x' as well as the type of reflection obtained with the initial
conditions. Note that x' is listed also for CMR; it is omitted, however,
for CMR where the location of the kink is not sufficiently clear. Since
the location of the kink in a CMR is not as well defined as the location of
the second triple point in a DMR, the accuracy of measuring x' in a CMR is
smaller than in a DMR. Consequently, the absalute errors are E(x) = 1° for
CMR and E(y') = 0.5° for DMR. (The errors associated in measuring Mg, Po
and To are discussed in Chapter 6.)

Owing to the size of the present report, most of the interferograms
have been omitted. However, as they are important as a data bank that might
be helpful in the future to various researchers, all the actual interfero-
grams of the nonstationary oblique shock wave reflections that were obtained
throughout the present study (see Tables 5 and O for details) are given in
Ref. 72. In all, 106 experiments were conducted.

7.1 Verification of Nonstationary Oblique Shock-Wave Reflection in (Ms, e;)-
Plane

In the present analysis the two different phenomena of:i’shock-wave
reflection by the wedge surface and the induced-flow deflection over the wedge
corner were treated independently (in Chapters 2 and 3, respectively). In
this manner Figs. 23 (nitrogen) and 24 (argon) were produced for reflection
and Figs. 25 (nitrogen) and 26 (argon) for flow deflection. A superposition
of these figures (Chapter 4) produced the overall phenomena of oblique shock-
wave diffractions shown in Figs. 39 and 40 for nitrogen and argon, respectively.
Recall that the appropriate value of x was subtracted from Figs. 23 and 24 in
order to superimpose them with Figs. 25 and 26.

In the following, the present analysis of nonstationary reflection of
oblique shock waves is compared with experiments. Figures 53 and 54 are
reproductions of Figs. 23 and 24 with Po = 15 torr only, for clarity. Note
that although most of the present experiments were made with Po ~ 15 torr,
those corresponding to low Mach numbers (Mg = 2 in nitrogen and argon) and
high Mach numbers (Mg > 6.79 in nitrogen and Mg > 7.53 in argon) were obtained
with slightly different initial pressures (see Tables 5 and 6 for details).
However, Figs. 23 and 24 indicate that the initial pressure becomes signi-
ficant for the boundary lines Mj = 1.00, M> = 1.00 and Mp' = 1.00 (Fig. 23)
at Mg = 7.56, 7.51 and 7.47, respectively, and for the boundary lines My = 1.00,
Mp = 1.00 and Mpr = 1.00 (Fig. 2L4) at Mg = 7.72, 7.65 and 7.32, respectively.
These high values of Mg were about the highest used throughout the present
study. For the boundary line 6] + 8o, = O of Figs. 23 and 24 the initial
pressure becomes significant at Mg = 6.05 and 5.56, respectively. However,
in the neighbourhood of these boundary lines the experiments did not go up
to Mg ~ 8, since in similar experiments that were conducted in the past
with the same facility the high-qmelity optical windows were burned (Ref. 43).

7.1.1 Diatomic Gas

The experimental data of Smith (Ref. 6) for Mg = 1.25, 1.51, 2.10 and
2.40, and White (Ref. 17) in air, Law and Glass (Ref. 51) in oxygen, and our
data in nitrogen are all added to Fig. 53 (a reproduction of Fig. 23 for
Po = 15 torr) in order to check the present analysis for nonstationary
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oblique shock-wave reflection in diatomic gases. [Note that the term reflec-
tion is used here as the results are plotted in the pseudo-steady plane

(Ms, a&)] Two points from Smith's experimental data that are reported

to be RR lie slightly below their analytical terminating boundary line.

We believe that this slight disagreement is probably due to Smith's use of
air (the lines ir Fig. 53 are for nitrogen). The presence of 20% axygen in
air would cause the boundary line to be lower than that of nitrogen, since
the oxygen becomes vibrationally excited at a lower temperature, and hence
the line would start shifting downwards at a lower Mach number.

Shock-wave reflection configurations reported by Smith (Ref. 6)
to be SMR in the range 2.10 < Mg < 2.42 appear to lie in the region that
corresponds to CMR (Fig. 53). However, a careful check of Smith's report
reveals that he observed that, "for strong shocks (his strongest shock was
Ms = 2.42) a reversal of curvature (in the reflected shock wave) develops",
and furthermore "the portion of the reflected shock near the triple point
that appears to be straight". This we believe corresponds to CMR. It is
clear that although he had noticed a CMR-configuration, he referred to
it as an SMR rather than propose a new type of reflection, since these two
configurations, except for the kink in R, are quite similar in appearance.
When White (Ref. 17) discovered DMR in 1951, the importance of CMR was
recognized as a different type of reflection. However, in White's report
CMR is still considered as SMR. Note that one experimental point of White
(Ref. 17), Mg = 2.3, 6y = 39.2° in the region where Smith (Ref. 6) reported
SMR, resulted in a CMR; this verifies the previous remark that those experi-
ments by Smith are CMR and not SMR. Excellent agreement can be seen with
all the other boundary lines since all the experimental points lie in their
predicted regions.

7.l.2 Monatomic Gas

The present experimental results (Table 6) in argon as well as
some data from Law and Glass (Ref. 51) in argon and helium are all shown in
Fig. 54 (a reproduction of Fig. 24, for Py = 15 torr).

One experiment reported by Law and Glass as CMR lies inside the
DMR regime (Ms = 7.66, 6, =~ 45°). However this experimental point is sur-
rounded by DMR points that were obtained during the present study. It might
be that the initial directions of the fringes chosen by Law and Glass (differ-
ent from ours) was such that the R)-shock wave (Fig. 19) of a DMR could not
be seen clearly. Note that Bazhenova et al (Ref. 62) also reported DMR in
argon, in the region where Law and Glass did not notice it.

Out of all our experimental points, only one (Ms = L.ul, ey = 45.5%)
that corresponds to a DMR lies outside its predicted region, in the CMR
domain. This we believe is due to the use of Eq. 2.47 in calculating the
CMR/DMR boundary line. Recall that Eq. 2.47 was found by Law and Glass
(Refs. 48 and 51) and Bazhenova et al (Ref. 46) to be in good agreement with
experiments only in the range 6y < 40® while for the range @y > 40°® the
agreement becomes progressively worse. Note that aside from this slight
disagreement all the other experimental points lie inside their predicted
regions.

7.2 Triple Point Trajectory Angle - x Comparison With Experiments

In order to superimpose the shock-reflection process (Figs. 23
for nitrogen and 24 for argon) with the flow-deflection process (Figs. 25
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and 26 for nitrogen and argon, respectively) the value of y was subtracted
from the corresponding boundary lines of Figs. 23 and 24. Two different
methods for the prediction of y were discussed in Section 2.3.1.1. The
first, due to Law and Glass (Ref. 51), was found by them to be in good
agreement with experiments (in oxygen) only in the range 25° < g, < kse,

The other, developed here, is for very small wedge angles,
fw < 5°. These two methods were applied to nitrogen and argon (Sections
4.1 and 4.2, respectively) to obtain Figs. 31 and 32 for nitrogen, and
Figs. 37 and 38 for argon. In the following, these two methods are checked
against the experimental results in nitrogen and oxygen.

7.2.1 Diatamic Gas

The present data (Table 5) were added to Fig. 55 (a reproduction
of Fig. 31), in order to test the present analytical version of the graphical
method by Law and Glass (Ref. 51) for predicting y in nitrogen. It is seen
that the agreement with experiments for wedge angles in the range 5° < 6y < Lo*
is reasonably good. Most of the experimental points in this range lie within
+ 0.5° from their predicted values. However, for @y < 5° the agreement becomes
progressively worse as 9y decreases. Note that while Law and Glass (Ref. 51),
who developed this method of predicting y, found it to be good only in the
range 25° < 9y < 45° (in oxygen), it is seen that good agreement actually
exists over a much wider range 5° < 6y < 45®, This is probably due to the
fact that they solved Eqs. 2.17 to 2.31 graphically, whereas the present
solution is analytical. During the present study their graphical solution
was checked for nitrogen. It was found to exhibit the same characteristics
as their graphical solution for oxygen. Note that for g, < 40® the actual
values of x are greater than those predicted. In this range all the data
points fall between the predicted perfect and imperfect gas models.

The experimental data for 2° and 5° wedge angles (Table 5) are
shown in Fig. 56 (a reproduction of Fig. 32) in order to check the present
method for predicting y for low wedge angles. It can be seen that for a 5°
wedge the present analytical version of the graphical method of Law and Glass
(Ref. 51) is actually in better agreement with experiment&l results than the
present method for small wedge angles. For oy < 4° the present method is in
good agreement with experiments.

It should be noted that it is very difficult to predict the value
of x, using the analytical version of the method of Law and Glass for very
small wedge angles (6y < 5°) owing to severe convergence problems as 8y
becomes small. The graphical solution is possible, however, accuracy is very
low and the error at even greater wedge angles (5° < &, < 20°) becomes signi-
ficant (Ref. 51). Consequently this is the only existing method of predicting
x at low wedge angles (oy < 5°).

T7.2.2 Monatomic Gas

The data from Table 6 for @y = 10°, 20°, 30°, L4O® and 50° is shown
in Fig. 57 (a reproduction of Fig. 37) in order to test the present analytical
method (based on Law and Glass, Ref. 51) for predicting yx against experiments
for argon. Very good agreement can be seen with the wedge angles 20°®, 30°® and
Lo° while for 10° and 50® the actual value of x is smaller than the predicted
one by more than 1° (the error bar). For these two wedge angles the agreement
is fairly good for small values of Mg (Mg < 3 for gy = 50° and Mg < 5 for
By = 10°) and becomes progressively worse as Mg increases.
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The data points for @, = 2°® (Table 6) are shown in Fig. 58 (a reproduc-
tion of Fig. 38 for ey, = 2®). The agreement is fairly good for low and high
Mach numbers while in the range 3 < Mg < 6 it is not so good. Here as well,
owing to convergence problems, it was not possible to get a prediction of x
using our analytical version of the method of Law and Glass (Ref. 51) for
Bw = 2%,

7.3 Verification of Nonstationary Oblique Shock Wave Reflections in (Ms, ew)-
Plane

Figures 53 (nitrogen) and 54 (argon) correspond to nonstationary
oblique shock wave reflection in the (Mg, e&)-plane. However, while the
exact value of the effective wedge angle e% can be measured only after an
actual experiment is recorded, the actual wedge angle 6y is a given parameter.
Consequently, it is of interest to obtain the reflection phenomena in the
(Ms, ®w)-plane rather than the (Mg, 6w)-plane. This is done by subtracting
the appropriate value of y (Figs. 31 and 32 for nitrogen, and Figs. 37 and 38
for argon) from the vertical axis of Figs. 53 and 54 (nitrogen and argon,
respectively).

v The line @) + Op, (Figs. 53 and 54) represents the boundary of the
RR process. Consequently, the actual value of y above (and on) this line is
zero. Therefore it does not change throughout the transformation. Recall
that the present method for predicting x for very small wedge angles (Section
2.3.1.1) is based on the experimental fact that in the nonstationary case,
the incident shock wave always reflects. Following this method (Eg. 2.33)
one can immediately see that the transformation 6w — 6y eliminate the lines
M1 = 1.00 of Figs. 53 and 54. In other words, on the lines M} = 1.00 (Figs.
53 and 54), ey = x and since 6y = 6y + x by definition the transformation
By —» 6w yields that the lines My = 1.00 coincide with the lines @w = 0. Con-
sequently only the lines Mo = 1.00 and.hé = 1.00 of Figs. 53 and 54 need be
transformed.

7.3.1 Diatamic Gas

The data from Smith (Ref. 6), White (Ref. 17) and Baghenova et al
(Ref. 55) in air, Law and Glass (Ref. 51) in oxygen, Bazhenova et al (Ref. 55)
and the present in nitrogen are all shown in a combined plot on Fig. 59 (ob-
tained from Fig. 53 by subtracting y) in order to verify the present analysis
of nonstationary oblique shock-wave reflection in the (Mg, Ow)-plane for
diatomic gases.

Two experiments (present one and one fram Law and Glass) with 6y = LO®
and Mg = 2.00 and 2.56, respectively, in the region where Smith (Ref. €) re-
ported SMR results in CMR, and verifies our previous remarks that those
experiments by Smith are CMR and not SMR. Many more data points from White
(Ref. 17) could have been used. However, since they all fall in their
predicted regions, they were omitted for clarity. It can be concluded from
this figure that our analysis of the nonstationary oblique shock-wave reflec-
tion in the (Mg, 6w)-plane for a diatomic gas is substantiated.

T7.3.2 Monatomic Gas

The data of Law and Glass (Ref. 51) in helium, Bazhenova et al
(Ref. 55), Law and Glass (Ref. 51) and the present experiments in argon
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appear in Fig. 60 (obtained from Fig. 54 by subtracting x) in order to check the
present analysis for nonstationary oblique shock-wave reflection in a monatomic
gas on the (Ms, fw)-plane. Very good agreement was obtained with the calculated
regions and their boundary lines. All the experimental points lying outside
their predicted regions are discussed in Section 7.1.2. It can be concluded
that the present analysis for nonstationary reflection of oblique shock-waves

in a monatomic gas is substantiated.

7.4 Verification of Noustationary Oblique Shock-Wave Diffraction in (Ms, ew)-Plane

Figures 61 and 62 are reproductions of Figs. 39 and 40 for nitrogen and
argon respectively. Unfortunately, not all the data shown in Figs. 53, sk, 59
and 60 could be used since information concerning the flow deflection process
is usually not reported [e.g., Bazhenova et al (Ref. 55), where in all the
recorded pictures the wedge corner is not in the field of view]. Consequently,
the present data in nitrogen and argon as well as a few data points from different
sources are shown in Figs. 61 and 62, that test the present analysis of nonstationary
oblique shock-wave diffraction (shock reflection and flow deflection) in the (Ms, 6w)-
plane.

7.4,1 Diatomic Gas

Our experimental data points from Table 5 in nitrogen and White's (Ref.
17) in air are shown in Fig. 61 (a reproduction of Fig. 39). It is seen that
all the data points fall inside their predicted region. Therefore, our analysis
of the shock-wave diffraction in nonstationary diatomic gases is substantiated,
and the seven different types of diffractions listed in Table 1 are all valid.

It is worthwhile to refer the reader to White's report (Ref. 17) where
excellent examples of shock-wave diffractions with degenerated reflected shock
waves are given (Figs. 34, 38 and 42 of Ref. 17). Note that White was able to
obtain very weak incident shock waves (Mg = 1.010, 1.047 and 1.022 for these
figures) for which the reflected shock wave vanishes as it degenerates into a
Mach wave. For further details see Section 8.

7.4.2 Monatomic Gas

Our data from Table 6 in argon are all shown in Fig. 62 (a reproduction
of Fig. 40). All experimental points (except the one at Mg = L.hk, g, = Lo*®
which have already been discussed) lie inside these predicted regions. Conse-
quently, one can conclude that the present analysis for nonstationary oblique
shock-wave diffraction in a monatomic gas is substantiated. Unfortunately, out
of the six different diffractions predicted by the present analysis (Table 2)
only five were observed experimentally. The remainder, a CMR with an attached shock
wave at the wedge corner (region 5, Figs. 40 and 62), was not observed since its
domain starts at Mg = 9.4 and lies beyond the practicali possibilities of incident
shock waves (Mg ~ 8) without damaging the interferometric quality windows of the
test section. However, in light of Fig. 62 and the verification of 5 regions out
of the 6 listed in Table 2, one can conclude that the present analysis for the
diffraction of oblique shock waves in nonstationary monatomic flows is substantiated
and that six different types of shock-wave diffraction exist in the range 1 < Mg <
10’
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7.5 Summary Discussions

The present experiments and analyses have verified the regions and
boundaries of nonstationary reflection of oblique shock waves in the (Mg, 6y)
and (Mg. Oy)-planes as well as those of ronstationary diffraction of oblique
shock waves in the (Mg, 6y)-plare for diatomi. and moratomic gases.

It is worthwhile to refer again to Fig. 3 which shows all the informa-
tion concerring these domains and transition boundaries of nonstationary oblique
shock-wave reflection in the (Mg, 6y)-planc that was krown prior to the present
research. A detailed description of Fig. 3 is given in Section 1, and hence
only a brief comparison follows. While Fig 59 covers a wide range of wedge
angles 0 < gy < 90° and shock Mach numbers 1 < Ms <10, Fig 3 is limited to
20° < 8, <60° (the region 60° < oy < 90° corresponding to RR was probably not
drawn since it does not contain any significant information) and 1 < Mg <9.
However, although the upper limit in Fig. 3 is Mg = 9, only line 1 extends all
over the entire range. Lines 2, 3, 4 and 5 terminate at Mg = 8.00, 4.75, 3.50,
and 2.75, respectively. In Fig. 59 all lines extend over the entire range, up
to Mg = 10. However, although Fig 59 was limited to Mg = 10 (due to the fact
that it was decided to make experiments only up to Mg = 8, in order not to
damage the high quality test section windows) the present analyses apply for
Mg > 10 as well. Unlike the case of Fig. 3 the analytically-obtained boundary
lines are for a perfect gas while thoss accounting for real-gas effects are all
experimental, all the boundary lines in Fig. 59 were obtained analytically,
either by solving Egs. 2.1 to 2.9 for an RR or Egs. 2.17 to 2.30 for the triple
point with and without real-gas effects. It is probably the first time that an
analybical solution was obtained for Egs. 2.17 to 2.30 with real-gas effects.

The contributions of the present study to knowledge concerning the
reflection of oblique shock waves in the (Mg, 6w) or (Mg, ¢o)-planes are
summarized in Tables 7 and 8. While RR and SMR were discovered one hundred
years ago (1878) by Ernst Mach, it is only about 35 years since CMR was first
noticed by Smith (1945) and DMR discovered by White (1951). The formation
criterion of RR in both steady and nonstationary flows was established by
Neumann (1943), as well as its termination criterion in nonstationary flows
(1943) More recently Henderson and Lozzi (1975) suggested a new criterion for
the termination of RR that was found (Ref. 65) to be correct only in steady
flows. However, Hornung and Kychakoff (1975) established a more general
criterion for the termiration of RR resulting in the sonic-criterion (slightly
below Neumann's criterion) for nonstationary flows, and Henderson and Lozzi's
criterion for steady flows. Henderson and Lozzi (1975) were the first to
suggest that the termination of SMR is followed by a CMR, and later when Mp
increases a DMR is formed. However, the exact criterion for the termination
of CMR, and hence the formation of DMK, was established only in the present
analytical study and verified by experiments.

Table 8 summarizes by whom and when the boundary lines between domains
of different types of oblique shock-wave reflection were calculated. For a
perfect monatomic gas the boundary line between RR and SMR, CMR or DMR was
calculated by Law (1970) and all the other boundary lines for both perfect and
imperfect gases were calculated in the present study. In the case of a diatomic
gas, the perfect gas boundary lines RR/SMR, CMR or DMR, SMR/CMR and CMR/DMR
were calculated by Neumann (1943), Bazhenova et al (1976) and Ben-Dor (present),
respectively. (Note that since Neumann worked in low Mach numbers, in his case
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the termination of RR was followed by an §MR, however, his criterion of the
termination of RR is good also for higher values of Ms where RR is followed by
a CMR or DMR.) All the boundaries corresponding to an imperfect gas, i.e.,
RR/SMR, CMR or DMR, SMR/CMR and CMR/DMR were calculated in the present study.

8. DENSITY-FIELD INVESTIGATION

The experimental facility and instrumentation discussed in _Chapter b
were used to obtain interferograms of nonstationary oblique shock-wave reflec-
tions. Lines of constant density (isopycnics) were obtained from them using
a method developed by Whitten (Ref. 75). A detailed description of this very
precise data-evaluation technique is given in Refs. 71 and 75. Therefore, only
a brief description will be given for obtaining the isopycnics (see Appendix E
for details).

Very good agreement with sophisticated numerical analyses were obtained
previously, using the identical equipment and evaluation techniques, in studies
such as ionizing shock-wave structure (Refs. 68 and 69), flat-plate and sidewall
boundary layers (Refs. 70 and 75) where boundary layer refraction errors are
more significant than in the present study. Consequently, one can conclude
that the refraction errors from sidewall boundary layers had a negligible
effect.

‘The errors associated with the present experimental and evaluation
techniques are discussed in detail in Ref. 71. However, since the number of
fringes inside the shock-diffraction region was small, a more conservative
estimation was made of the absolute error in measuring fringe shifts. The
error is taken as E(s) = 0.1 rather than the already conservative estimation
used by Whitten and Ben-Dor (Ref. 71), i.e., 0.05. Consequently, the absolute
errors associated with the densities as measured from the interferograms are:

E(0p) = 4.292 x lO-6 ~5§ for argon (8.1)
cm

E(fp) = 2.097 x 10_6 _E§ for nitrogen (8.2)
cm

Since the values of the isopycnics were all normalized wrt the flow density
ahead of the incident shock wave po, the relative error Ap/p, is used through-
out the present report.

During the last few years various investigators (Refs. 61, 63 and 6k4)
tried to develop computer codes for predicting the density field associated
with RR and SMR. No such data exist for CMR and DMR. A detailed comparison
between their numerically predicted density fields and the present results
is given in Ref. 73 and briefly .discussed in Section 8.2. The comparison
reveals that all numerical methods provide reasonable prediction of the wave
systems and their shock shapés for the cases that were compared. However,
they predict rather poor values and locations of the more sensitive indicators
of the flow isopycnics. Consequently the various codes (Refs. 61, 63 and 6k4)
require a reassessment and perhaps a new approach in the light of the disagree-
ment with the present detailed and very accurate interferometric data. Undoubtedly,
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numerical codes will evolve in the future that will reliably predict such
complex flow in imperfect gases. No doubt the present data will provide a
solid base for future comparison.

8.1 Nitrogen

The seven shock wave diffraction domains corresponding to regions 1
to 7 of Fig. 39 are shown in the interferograms 63a to 63g, respectively. The
density distribution (p/py) in the flow fields, in terms of isopycnics (n)
associated with each diffraction process, are shown in Figs. 6ha to 6i4g. The
density profiles along the wedge and the shock-tube wall appear in Figs. 65a
to 65g. In the following, a general description is given of each diffraction
as well as their similarities and differences.

Figures 63a, 63b, 63c and 63f which correspond to flow deflections
through detached shock waves (regions 1, 2, 4 and 6 of Fig. 39), shock wave
bifurcation and boundary layer roll-up are clearly seen. In order to have a
closer look at the shock wave bifurcation four experiments with Mg = 4.64,

4,59, 4,60 and 4.72 and ey = 40° were made. The process was recorded 26, 126,
226 and 326 psec after the incident shock wave passed the centre of the test
section. The four corresponding interferograms are shown in Figs. 66a to 66d,
respectively. Figure 66a reveals, as expected, a DMR with a detached bifurcated
shock wave. In Figs. 66b to 66d the incident shock wave is already outside of
the field of view; however, the bifurcation process is seen to be growing with
time. Figures 66b and 66¢c, for example, show very clearly a bifurcated shock
and a slipstream, i.e., a three-shock confluence or a triple point. Note the
clear compression at the wedge corner and expansion wave as the wedge becomes
flat giving rise to a corner-expansion flow. In Fig. 66d the reflected shock
wave R 1s seen reflecting from the upper wall of the shock tube. Unfortunately,
the upper wall is not in the field of view; however, it looks like the reflected
wave R reflected through a single-Mach reflection and that a Mach stem joins it
to the upper wall.

It is worthwhile mentioning that White in his pioneering work (Ref.
17) was able to produce some very weak incident shock waves. He evaluated his
interferograms on shock-wave diffractions at very low Mg. Figures 67a and 67b
are reproductions of two of his original figures (Figs. 34 and 46 of Ref. 17).
The initial conditions for these two pictures are Mg = 1.010, @y = 5.7° (SMR)
and Mg = 1.018, ow = 30° (RR), respectively. For these low values of Mg the
reflected shock wave degenerates to a Mach wave and the flow turns over the
wedge subsonically. Note that for these two examples from White (Ref. 17) the
induced flow Mach number M5 is 0.017 and 0.029, respectively.

When the flow deflection over the corner is achieved through an
attached or detached shock wave there is a sharp density jump at t point
(Fig. 65). In the case of an attached shock wave at the corner (Figs. 63c,
63e and 63g) the highest density along the wall is measured immediately
behind the attached shock wave, i.e., at the corner (point b, Figs. 65c, 65e
and 65g) while in the case of a detached shock wave (Figs. 63b, 63d, and 63g)
the highest density may or may not be (Figs. 65a and 65d) behind this shock wave
or at the corner. It can occur near the slipsteadm (Fig. 65b) or near the
corner (Fig. 65d).

The existence of a compression wave at the kink K of a CMR can be
clearly seen in Figs. 65d and 6he where the isopycnics converge. The corre-
sponding compression strengths (density ratios) are approximately 6.880/6.4L7
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and 8.778/8.127 or 1.067 and 1.080, respectively. For the compressions of
1.067 and 1.080 an increasingly clearer kink can be seen (Figs. 63d and 63e).
The equivalent perfect shock wave Mach numbers that would give the same
compressions are 1.040 and 1.048, respectively. The calculated flow Mach
numbers behind the reflected wave Mo in the vicinity of the triple point T
are 1.251 and 1.319, respectively. Once a DMR is formed (Mp > 1) the iso-
pycnics do not converge any more (Figs. O4f and 64g) and the compression wave
is replaced by a shock wave.

In the cases of SMR (Figs. 64b and 6lc) the convergence of the
isopycnics corresponds to a weak expansion wave rather than a compression wave
(follow the isopycnic numbers). The strengths of those expansion waves are:
3.747/3.868 and 5.53/6.11 or 0.969 and 0.905, respectively. The case with an
attached shock wave has the strongest expansion. This is also true for CMR
(Figs. 6lc and 6he). Figures 65a to 65g show that the density along the wedge
surface always increases as one moves from the Mach stem towards the point where
the slipstream disappears into the boundary layer. Consequently the flow behind
the Mach stem is being further compressed.

Although the density flow field associated with the various shock
wave diffractions differ greatly, nevertheless they do have some similarities.
For example, in the case of an attached shock wave, Figs. 64c - SMR and 6ke - CMR,
the isopycnics tend to run perpendicular to the reflected shock wave. In the case
of DMR (Figs. 64f and 6hg) a "corridor" is formed for the second slipstream. In
Fig. 63g the second slipstream is not visible, probably because the change in the
density is not sufficiently large to establish a noticeable fringe shift. However,
the "corridor" is clearly seen in Fig. 6lg and consequently a thin dashed line
has been drawn in Fig. 65g to indicate the possible location of the second
slipstream. !

The density at any point (x,y) of Figs. 6la to 6ig can be calculated
either by interpolating between or by extrapolating beyond the isopycnic in
the vicinity of that point. However, since the density difference between the
isopycnics is quite small, any region between them can be assumed to have a
uniform average value. For a region where the density change was not suffi-
ciently large to plot isopycnics it can be assumed as uniform with the indicated
density number. For example, region n = 6 bounded by R, R} and S in Fig. 6hg
is assumed with p = 8.87p,. The relative error Ap/p, given in each figure
(Figs. 6la to 6l4g) was obtained from Eq. 8.2 simply by dividing with the corre-
sponding value of py. The error is fixed for a particular experiment. It can
be as high as 37.6% for Po ~ 5 torr (Fig. 6lig) and as low as 5.2% for Py =~ 37
torr (Fig. 64b). Note that the position of a point on any isopycnic was drawn
within an accuracy of + 1 mm.

8.2 Comparison With Some Numerical Data and Discussions

The different compared cases and their initial conditions are shown
in Table 9. Although we have tried to perform our new experiments using exactly
the same initial conditions as those chosen by Schneyer and Kutler and Shankar
for their numerical analyses, it was experimentally convenient to use nitrogen
at different initial pressures. However, owing to the fact that nitrogen and
oxygen can be treated as a perfect gas at a shock Mach number Mg = 2.00, the
change in the initial pressure was not significant. Furthermore, since the
value of the flow isopycnics were normalized by the initial density ahead of
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the incident shock wave any correctly-computed and actual isopycnic shapes and
values must be the same. However, for strong shock waves real gas effects are
important and must be taken into account, for KR at Mg = 4.58 and Py = 15.31
torr.

It can be seen from Table 9 that three different cases were compared.
Case 1 results in an RR with a weak incident shock wave (Mg = 2.0) and it was
numerically solved by Schneyer and Kutler and Shankar. Case 2 is again an RR
but with a stronger incident shock wave (MS = 4.71) and it was analyzed by
Kutler and Shankar. Case 3, an SMK, was solved by Schneyer using two different
computer codes, the two-dimensicnal Euierian code THOR, & revised version of

the HELP (Ref. 78) code, and the two-dimensional Lagrangian code CRAM, based on
Wilkins' formulation (Ref. 79). In Kutler and Shankar the two-dimensional time-
dependent Euler equations were solved. The hyperbolic partial-differential
equations were transformed to introduce self-similarity and the distance between
the corner and the incident shock wave was used for normalization. The self-
similar transformation reduces these equations from an unsteady to a quasi-
steady set of mixed elliptic-hyperbolic ecuations. Then the equations were

made totally hyperbolic by reintroducing a time-like term. The final set of
equations were written in a "strong conservation law form" and solved using
MacCormack's (Ref. 80) second-order finite-difference algorithm.

Comparison With Case 1

The shape of the isopycnics obtained numerically by Schneyer, Kutler
and Shankar and in the present experiments are shown in Figs. 68a, 68b and 68c,
respectively. The contour number and the corresponding density ratio are tabu-
lated in Figs. 68a and 68c. Unfortunately we were unable to obtain the contour
numbers from Kutler and Shankar (Ref. 63) for Fig. 68b. It is worth noting that
the measured density ratios immediately behind the incident and reflected shock
waves always agree well with theory. It can be seen immediately that the actual
shapes of the isopycnics obtained experimentally appear similar to those pre-
dicted by Kutler and Shankar. However, the results from Schneyer do not
represent the physical flow. One could discard the isopycnics shown hy Schneyer
using the following argument. Schneyer's isopycnics (even if their lines were
taken to represent the shock as a result of artificial viscosity smearing)
have the same value over the entire length of the reflected shock R. This means
that the density jump across R is constant everywhere. However, since the angle
of incidence between the flow entering R (in a frame of reference attached to
the reflection point P) decreases as R moves away from P, the strength of R
should increase to maintain a constant density jump. This contradicts both
theory and experiment where the shock-wave strength along R decreases as the
distance from the reflection point increases, as shown in Fig. 68c. Conse-
quently, the density ratios in the vicinity of Q in Fig. 68a are much larger
compared with the actual result (Fig. 68c). However, just the range of density
given by Schneyer (Fig. 68a) approximates the measured range (Fig. 68¢). Un-
fortunately only a qualitative comparison can be made with the results of Kutler
and Shankar since their values corresponding to the various isopycnics were not
given on the figures in Ref. 63, and were unavailable from private communications.

A comparison between the actual shock-wave configuration and the shapes
predicted by Schneyer and Kutler and Shankar is shown in Fig. 68d. Since
several isopycnics of Schneyer represent shock waves as a result of artificial
viscosity, the two extreme contours were reproduced in Fig. 68d. The distance
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between the incident shock wave and the correr is normalized for all shapes.
It can be clearly seen from Fig. 68d that the predicted shapes do not differ
too much from the actual shock-wave configuration. It is worth mentioning
that Kutler and Shankar predict their numerically-obtained configuration to
be slightly larger than the actual one. However, their explanation that this
is due to viscous or real-gas effects is reasorable for the latter. It can
be shown analytically that vibrational excitation will reduce the angle
between the reflected shock wave and the wedge and hence will result in a
smaller configuration. The angle between R and the wedge surface at the
reflection point is 16.34° for a perfect gas and 1€.04° when real-gas effects
are considered. Note that although Schneyer and Kutler and Shankar used two
different computational methods which disagree in the prediction of the entire
density field, they nevertheless agree in the shock shapes and systems. One . |
can only conclude that the isopycnics are much more sensitive indicators of |
the accuracy of the physical flow modelled by a specific numerical technique.

Comparison of Case 2

The general shapes of the isopycnics predicted by Kutler and Shankar
(Fig. 69a) do not agree with the actual ones (Fig. 6ha). Their predicted shapes
for this case of RR are almost the same as those discussed previously (Fig. 68b)
while our results are very different (Fig. 68c). The disagreement between the
actual and numerical isopycnics may arise from the fact that Kutler and Shankar
assume a perfect gas. However, for Mg = 4.71, Py = 15 torr, Ty = 298 K, real-
gas effects cannot be neglected as the vibrational contribution is significant
(e.8., po/po = 14.53 for a perfect gas and 17.75 for an imperfect gas). Although
this will change the absolute numerical values of the isopycnics it might also
affect their shapes.

Although Kutler and Shankar did not report the values of the various
isopycnics on their reproduced Fig. 69a, we deduced representative values from
their density distribution along the wall shown in Fig. 69b. The range of their
densities is lower than the present owing to their assumption of a perfect gas.
Note that the strength of the reflected shock wave R decreases from the reflec-
tion point to the shock~tube wall in agreement with experiment (Fig. 64a). The
numerically calculated density distribution along the wall surface predicted
by Kutler and Shankar as well as the measured values close to the wall above
the thin boundary layer are shown in Figs. 69b and 652, respectively. The fact
that the actual density values are higher than those predicted by Kutler and
Shankar again arises from their perfect-gas assumption. For their case of
Ms = 4.71 the perfect-gas value pp/po = 14.53, while for the present case the
measured value of pp/po = 16.77, and it lies between the perfect and imperfect
equilibrium values of 14.48 and 17.65, respectively.

The vortical singularity predicted by Kutler and Shankar (V, Fig. 69a)
or point d (Fig. 69b) cannot be seen in the interferogram. Therefore the curve
from b to £ (Fig. 658&), unlike the curve in Fig. 69b, has no discontinuity.

If one existed it would be smeared out by the boundary layer. Both curves
consist of a sharp density jump Py (f - f£) at the reflection point followed
by a uniform-density region (whick is longer in Fig. 69b) terminated by an
expansion. At the detached shock-wave position b another sharp rise takes
place (the rise is greater in Fig. 69b). The fringe pattern due to the
shock-boundary-layer interaction at the corner was too complex to analyse.
Therefore the density ratio was extrapolated to the location of the detached
shock wave near the corner.
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The actual shock wave configuration and the one predicted by Kutler
and Shankar are shown in Fig. 69c. This figure agrees with their statement
that "the experimental shock location would fall inside the numerical solution".
As mentioned earlier, the reason for this lies in real-gas effects rather thar
viscous effects suggested by Kutler and Shankar. The angle between the reflected
shock wave R and the wedge surface for a perfect gas is 14.80° and 12.45° for
a real gas. Consequently the actual shape is smaller than the one obtained
from a perfect-gas model.

Comparison With Case 3

The shapes of the isopycnics obtained numerically by Schneyer (Ref.
61) using the Lagrangian and Eulerian computer codes as well as those obtained
experimentally are shown in Figs. 70a, 70b and 7Oc, respectively. It is evident
that the Lagrangian and Eulerian results differ quite considerably from each
other and fram the actual isopycnics. The numerical configurations suffer from
the same artificially viscous spreading of the incident and reflected shock
waves. The isopycnics maintaining the same values along R imply a physically
unrealistic reflected shock wave of increasing strength as it moves away from
the triple point T. Spurious isopycnics (n = 4 and 5, Fig. 70a) appear from
the Lagrangian code in the middle of the reflected wave R. There are no
density contours generated in the important region between the Mach stem M and
the slipstream S. The Eulerian contours fail to predict the existence of a
slipstream altogether (Fig. 70b). If a line is drawn at the estimated location
of the slipstream, it intersects the isopycnics implying that the densities on |
both sides of the slipstream are equal in violation of the physical condition ‘
that the slipstream divides two thermodynamic regions of different densities, ﬁ
even if not large. Schneyer (Ref. 61) attributes the appearance of the spurious
expansion and shock waves in the middle ofR in the Lagrangian results to an
inexact choice of the initial velocity profile. He explains the disappearance
of the slipstream (in the Eulerian result) as being "washed out" by the "effective
[artificial] viscosity".

The actual shape of the isopycnics (Fig. 7Oc) show very clearly that
the densities on both sides of the slipstream are different. The densities
behind the reflected shock wave are higher than those behind the Mach stem,
as expected from gasdynamic sondierations. The approximate density ratio across
the slipstream is 1.12 (3.67/3.27 near the triple point) shows that it is indeed
a weak discontinuity. The analytical density ratio across the slipstream in
the vicinity of the triple point is 1.10. A qualitative comparison between
the shapes of the actual isopycnics and those of Schneyer indeed show poor
agreement. However, as in the previous case only the range of density values
approximate those obtained experimentally.

A comparison between the normalized predicted shock shapes and the
actual wave configuration is shown in Fig. 70d. The Lagrangian wave system is
somewhat larger than the Eulerian. The actual shock wave system lies close to
or inside the Eulerian shape boundaries. The slipstream predicted by the
Lagrangian code agrees reasonably well with experiment. It is worth repeating
that also in this case the Lagrangian and Eulerian codes predict the actual
wave system quite well. However, the isopycnic fields and the varying strength
of the reflected wave are poorly represented.

It can be summarized that the present experiments show that all
numerical methods provide reasonable predictions of the wave systems and their
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shapes for the two analysed cases of RR and SMR. No numerical data exist for
the cases of CMR and DMR. The numerical codes predict rather poor values and

locations for the more sengitive indicators of the flow properties, namely the
isopycnics. Of the various numerical analyses produced so far, the one of
Kutler and Shankar (Ref. 63) and Shankar, Kutler and Anderson (Ref. 64) are
superior. Even their codes require a reassessment and perhaps a new approach
in the light of the disagreement with the detailed and very accurate interfer-
ometric data presented here.

Undoubtedly, numerical codes will evolve in the future that will
reliably predict not only RR and SMR but also CMR and DMR in real gases. The
present interferometric data of all these cases should provide a solid base
for comparison. In the meantime, those laboratories that have shock tubes
equipped with interferometers will benefit from experiments in nonstationary
flows in order to check their numerical analyses.

9. CONCLUSIONS

The criteria for the formation and termination of RR, SMR, CMR and
DMR, their domains and transition boundaries in both nitrogen and argon, in
the (Ms, 6y)-plane for nonstationary flows and in the (Mg, ¢)-plane for
steady flows have been established analytically and verified experimentally.

The equations of motion for RR and SMR in a perfect and an imperfect
gas (nitrogen in dissociation equilibrium and argon in ionization equilibrium)
have been solved, and the significance of real-gas effects on shifting the
boundary lines between the domains of different reflections was shown for the
first time. :

Analytical methods for predicting the values of x and y' were
developed, and consequently the reflection process was transformed from the
(Ms, Sw)-plane to the more physical (Mg, 8w) -plane. The reflection phenomenon
in the (Mg, 6y)-plane was then superimposed with the flow deflection process
in the (Ms, 6y)-plane to yield the overall shock-wave-diffraction phenomenon.
It is shown that the range 1 < Mg < 10 seven different types of diffraction are
possible in nitrogen and six in argon depending on the incident shock wave
Mach number Mg, the wedge angle gy, and the initial pressure P, and tempera~
ture T,. The present analyses were all substantiated by over 120 interfer-
ometric experiments conducted in the UTIAS 10 cm x 18 cm Hypervelocity Shock
Tube, as well as many other data in nitrogen, oxygen and air for a diatomic
gas and argon and helium for a monatomic gas obtained from other sources. This
has brought new order and understanding of the various results from different
researchers.

One significant problem remains, namely a more accurate analytical
method for calculating the triple-point trajectory angle x than the one
developed earlier by Law and Glass (Ref. 61) using a graphical technique and
presently by using a more accurate analytical method.

The density fields of the different diffraction processes have been
deduced from the corresponding interferograms, and compared with available
numerical predictions.




The very comprehensive isopycnic data are the first since the early i
pioneering work of White (Refs. 17 and 18) who first noticed the four types of
reflection. The results provide an important base for testing available and
future computational codes describing such complex flows. Although the
numerical methods can satisfactorily predict the gross features of the wave
system and shock shapes for regular and single-Mach reflections, they are as
yet unsatisfactory for predicting the isopycnics of the flow {Ref. 73). Mo
computational data presently exist for complex and double-Mach reflections. i
Undoubtedly, such codes will evolve in the near future.
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Table 1

Diffraction Regions in Nitrogen

(Fig. 39)

Shock Diffraction
Region No.

Shock Flow
Reflection Deflection

RR Detached
SMR Detached
Attached
Detached
Attached
Detached

Attached

Table 2

Diffraction Regions in Argon

(Fig. Lo)

Shock Diffraction
Region No.

Shock Flow
Reflection Deflection

RR Detached
SMR Detached
SMR At tached
CMR Detached

CMR Attached

Detached
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Table 3
Initial Conditions for Obtaining

Various Shock Wave Mach Numbers - Nitrogen

Ms P’-&l Driving Gas
2.0 110 002
37 220 He
4.8 690 He
6.2 800 He
7.0 1550 H2
7.8 3320 H,
Table b

Initial Conditions for Obtaining

Various Shock Wave Mach Numbers - Argon

Ms Phl Driving Gas
2.0 60 CO2
3.0 70 He
4.4 350 He
5.2 800 He
6.1 520 H2
6.9 1000 H,
7.9 1900 Hz
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Table 5

Initial Conditions for the Experiments in Nitrogen

. Reflec- .
ew Ms Po To X X tion Bxp-
2 1.95 52.50 297.2 26.0 SMR 70
2 1.89 53.50 297.3 26.5 SMR 71
2 1.85 52.50 297.h4 26.5 SMR 72
2 3.84 15.19 297.k4 23.5 SMR 73
2 4.15 5.8 &=7.3 23.0 SMR Th
5 3.0 15.25 295.9 20.5 SMR 37
5 L.71 15.81 295.2 20.0 SMR N 1
S 5.85 15.18 297.0 19.5 SMR 33
5 6.01 15.19 295.8 18.5 SMR 34
5 6.86 10.00 295.6 18.0 SMR 35
5 T .50 5.17 296.0 17.5 SMR 36
10 2.01 50.00 295.8 19.0 SMR 39
10 2.37 35.44 297.7 18.5 SMR 88
10 2.61 37.00 297.8 18.0 SMR 90 1
10 2.82 30.34 297.6 18.0 SMR 89 :
10 3.62 15.23 295.4 16.5 SMR 4o
10 4 .59 15.16 298.5 16.2 SMR 5
10 L.72 15.00 295.0 16.0 SMR L1
10 5.92 15.27 295.0 15.5 SMR 42
10 6.79 10.21 295.2 15.0 SMR L3
10 7.58 5.13 294.8 k4.5 SMR Ly
20 1.93 51.00 297.2 12.5 SMR
20 3.7h4 15.31 297.h4 12.0 CMR
20 L.81 15.29 296.6 11.5 15.5 CMR
20 6.27 15.33 296.0 11.2 4.5 CMR
] 20 6.87 0.2 2958 11.0 14.0 CMR
20 TTL 5.06 296.0 10.0 1.5 CMR
26.56 2.01 50.00 296.6 9.2 SMR
26.56 8.06 5.10 298.2 9.0 9.9 DMR
30 1.97 51.00 297.h4 8.5 SMR
t 30 3.68 15.27 297.3 8.0 10.0 CMR
30 4 .68 15.28 297.4 7.8 9.5 DMR
30 5.93 15.22 297.k4 ol 10.0 DMR
30 6.96 10.11 297.h4 7.6 9.8 DMR
30 7.97 L.99 297.4 7.4 9.0 DMR

Continued




Table 5 - Continued

Initial Conditions for the Experiments in Nitrogen

M P T, X [ Exp.
2.02 50.00 297.3 4.0 63
3.69 15.34 297.4 4.8 62
4.59 15.64 298.2 9
4 .60 15.15 298.4 10
L .64 15.29 297.2 5.0 6.2 6
4. .72 15.31 296.4 70
L.75 15.30 297.h 5.2 6.2 61
4.98 5.13 296.9 5.2 6.8 5
6.17 15.34 297. 4.2 6.0 60
6.97 10.28 297.3 3.8 5.5 59
7.78 5.00 297.3 3.5 4.0 57
7.95 5.01 298.5 3.8 4.0 58
2.07 50.00 299.6 RR 127
3.69 15.27 298.9 RR 126
L .78 15.24 298. RR 125
6.22 15.29 299.6 RR 124
7.29 1022 2091 RR 123
1.96 65.00 299.0 RR 130
2.03 59.00 299.2 RR 128
3.84 17.18 299.0 RR 129
4 .68 15.31 298:1 RR 18
L.76 15.26 298.4 RR 131
2.01 50.00 296.8 RR 25




Table 6

Initial Conditions for the Experiments in Argon

W Ms Po II‘o Exp.
2 2.03 50.00 297.4 84
2 3.02 20.29 297.8 83
2 4.39 15.00 297.4 75
2 5.19 15.30 297.2 78
2 5.33 5.0k4 297.3 76
2 5.42 5.08 297.3 77
2 6.13 15.33 296.0 80
2 6.47 15.32 295 .4 81
- 777 9.80 297.6 82
2.01 50.00 298.6 .0 85

2.96 20.28 299.0 .0 86

4 .39 15.32 297.0 .5 87

5.22 15.22 298.4 .2 91

6.06 15.24 299.0 5 92

6.47 352 299.0 5 93

7.88 9.96 298.6 5 9k

2.00 50.00 298 .4 .0 101

2.82 20.32 299.0 5 100

4 .40 15.26 299.0 .0 99

520 15.22 299.0 .0 17.0 98

6.04 1527 297.2 T 17.5 97

6.84 15.22 298.4 .0 18.0 96

7.76 9.84 299.0 .0 175 95

2.03 50.00 299.6 .5 103

2.89 20.24 299.2 .5 12.0 104

Gl 15.25 299.0 .0 13.0 105

5.29 15.21 299.4 .0 12.5 106

6.36 15.27 299.4 o 13.0 107

6.96 15.00 295.4 .0 13.0 109

8.01 9.80 299.5 .0 13.0 108

: 50.00 297.8 6.0 11.0 116

¢ 20.34 299.8 5.5 10.0 115

; 15.00 299.1 5D 10.0 11k

. 15.29 297.9 5.5 10.0 113

’ 15.32 297.6 57 10.0 112

6.81 15.23 298.8 5.7 9.5 111

7.53 9.87 297.0 5.5 9> 110

2.04 50.00 298.2 1.0 117

2.96 20.50 298 .4 1.5 4.0 118

4.4o 15.30 299.2 2.0 4.0 119

5.27 15.32 298.2 1.5 4.0 120

6.27 15.34 299.4 1.k 4.0 121

7.03 15.29 299 .4 i3 3.5 122

Continued
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Table 6 - Continued

Initial Conditions for the Experiments in Argon

. Reflec-
O M P T, X X tion Exp. ’
60 2.03 50.00 301.0 RR 132
60 2.03 50.00 299.2 RR 134
60 3.03 20.00 299. RR 133
60 4 .50 16.16 299.8 RR 135
60 5.24 15.30 299.2 RR 136




Table 7

Discovery of Four Types of Obligue-Shock-Wave Reflections

Suggestion of Criterion for
Discovered by Formation Termination
Mach Neumann Hornung et al
RR Ref. 1 Ref. 2 Ref. 65
1878 1943 1976
Mach Hornung <t White
SMR Ref. 1 Ref. 65 Ref. 17
1878 1976 1951
3
Smi th White Ben-Dor
CMR Ref. 6 Ref. 17 Present
1945 1951 1978
**
White Ben-Dor
DMR Ref. 17 Present *hx
1951 1978

**

The termination criterion of RR and formation criterion of SMR for non-
stationary flows were established by Neumann (1943) and for steady flows

by Henderson and Lozzi (1975). However, Hornung and Kychakoff established
a more general criterion which holds for both steady and nonstationary flows

Recall that CMR and DMR do not exist in steady flows.

%% For the time being DMR may not terminate. However, it is possible that for

very high values of Mg, the flow Mach number in state (5), see Fig. 19,
will become so high that a shock wave will be needed to prevent it from
colliding with the wall. Under these circumstances DMR will terminate,
and a triple-Mach reflection (TMR) might be formed.




Table 8

Discovery of Analytical Boundaries

for Four Types of Oblique-Shock-Wave Reflection

Calculation of Boundary Lines Between Reflection Domains
Monatomic Gas Diatomic Gas
Perfect Tmperfect Perfect Imperfect
*
SMR Law Ben-Dor Neumann Ben-Dor
RR/ CMR Ref. 48 Present Ref. 2 Present
DMR 1970 1978 1943 1978
Ben-Dor Ben-Dor Ben-Dor Ben-Dor
DMR/CMR Present Present Present Present
1978 1978 1978 1978
Ben-Dor Ben-Dor Bazhenova et al Ben-Dor
CMR/SMR Present Present Ref. 55 Present
1978 1978 1976 1978

* Recall that the termination of RR can result in either an SMR, CMR or
DMR depending on the value of Mg (see Figs. 39 and 40 for details).

-




Table 9

The Compared Reflection Cases and Their Initial Conditions

Imperfect
e Perfect Gas
g 1
Initial¥* Present A chn?yef T, N : Kutler
Type | Case | Conditions | Experiment S el ase FLa.gra.ngian ' & Shankar
|
Gas N, »=1.40 | o=1.ko
6,° 63.43 63.43 63.41
M 2.01 2.00 2.00
l S
P_ (torr) 50.00 760 760
5 T, (K) 298.6
5 og(e/emd) | 7.57x107 1073 1073
=]
~ Gas N2 O2
g 9. ° 60.00 60
w
§ M 4 .68 L.71
2 S
B, (torr) 15.31 15
/8 (K) 298.1 298.6
oo(8/cm) | 2.31x107 2.50x10"°
. Gas N, y=1.k0 »=1.ko
3 8,° 26.56 26.56 26.56
g M 2.01 2.00 2.00
3 S
g 8 (torr) 50.00
fé T, (K) 296.6
% o(&/ e’ ) 7.57%10"° 1073 1073
w

* Initial conditions are for the quiescent gas ahead of the incident shock wave.
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FIG. 3. DOMAINS AND BOUNDARIES OF SHOCK WAVE REFLECTION IN M ,ew)-pLANE
(ENLARGE REPRODUCTION OF FIG. 5, REF. 62). SOLID LINES
ARE ANALYTICAL, DASHED LINES ARE EXPERIMENTAL.
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FIG. 4. EXPLANATORY DIAGRAM OF THE REASONS FOR NONSTATIONARY SHOCK-
WAVE REFLECTION.

(a) Nonstationary flow with M1 > 1w.r
(b) Nonstationary flow with Ml < 1 w.r.t, point p.
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FIG. 9. REGULAR REFLECTION PROCESS AT POINT P, NITROGEN, P = 15 TORR,
To = 298.6 K, M = 2.00.
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FIG. 12. SCHEMATIC DIAGRAM OF A SINGLE-MACH REFLECTION (SMR).
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FIG. 13. SMR IN THE (P,0)-PLANE, NITROGEN. Po = 15 TORR. To = 300 K,
Ms = 1,59,6 ; = 46.27°, Mo = 2,30.
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FIG. 14(a) SMR SOLUTION IN THE (P,8)-PLANE WHEN 6, = 6_ < 0‘, Yy = 1.40,

(a)

: i 3o
M, = 1.60, 6] = 42.12°, M_ = 1.18.
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FIG. 14(b) SMR SOLUTION IN THE (P,8)-PLANE WHEN By =0, >0

(2),(3)

(b)

y = 1.40, Mo = 1.50, 0." = 40.33°, Ms = 1. 140 2
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FIG. 14(c) SHR SOLUTION IN THE (P 0) PLANE WHEN gy = 02 A TR 1.40,
1.55, B' = 48.50°,
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FIG. 17. SCHEMATIC DIAGRAM OF A COMPLEX-MACH REFLECTION (CMR).
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FIG. 18. CMR IN THE (P,8)-PLANE.
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SCHEMATIC DIAGRAM OF A DOUBLE-MACH REFLECTION (DMR).

FIG. 19.
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FIG. 21. SCHEMATIC DIAGRAM ILLUSTRATING THE RELATIVE MOTION OF THE SECOND TRIFLE
POINT T, w.r.t. THE FIRST TRIPLE POINT T AND SOME VELOCITY TRANSFORMATIONS

THE ANALOGY BETWEEN THE WAVE SYSTEM OF THE FIRST AND SECOND

FIG. 20,
TRIPLE POINTS (T AND T,) OF A DMR.




